Unité Bioinformatique Evolutive, Institut Pasteur, Paris, France; Sorbonne Université, Collège Doctoral, Paris, France.
Unité Bioinformatique Evolutive, Institut Pasteur, Paris, France; Hub de Bioinformatique et Biostatistique, Institut Pasteur, Paris, France.
Curr Opin Virol. 2021 Dec;51:56-64. doi: 10.1016/j.coviro.2021.09.009. Epub 2021 Sep 28.
Drug resistance mutations appear in HIV under treatment pressure. Resistant variants can be transmitted to treatment-naive individuals, which can lead to rapid virological failure and can limit treatment options. Consequently, quantifying the prevalence, emergence and transmission of drug resistance is critical to effectively treating patients and to shape health policies. We review recent bioinformatics developments and in particular describe: (1) the machine learning approaches intended to predict and explain the level of resistance of HIV variants from their sequence data; (2) the phylogenetic methods used to survey the emergence and dynamics of resistant HIV transmission clusters; (3) the impact of deep sequencing in studying within-host and between-host genetic diversity of HIV variants, notably regarding minority resistant variants.
耐药突变在治疗压力下出现在 HIV 中。耐药变异株可传播给未经治疗的个体,导致病毒迅速学失败,并可限制治疗选择。因此,定量评估耐药性的流行、出现和传播对于有效治疗患者和制定卫生政策至关重要。我们综述了最近的生物信息学进展,特别是描述了:(1)旨在根据 HIV 变异体的序列数据预测和解释其耐药水平的机器学习方法;(2)用于调查耐药 HIV 传播簇出现和动态的系统发育方法;(3)深度测序在研究 HIV 变异体的宿主内和宿主间遗传多样性方面的作用,特别是关于少数耐药变异体。