Suppr超能文献

基于深度卷积生成对抗网络与卷积神经网络的氢气传感器不平衡数据故障诊断

Imbalanced data fault diagnosis of hydrogen sensors using deep convolutional generative adversarial network with convolutional neural network.

作者信息

Sun Yongyi, Zhao Tingting, Zou Zhihui, Chen Yinsheng, Zhang Hongquan

机构信息

Key Laboratory of Electronics Engineering, College of Heilongjiang Province, Heilongjiang University, Harbin 150001, People's Republic of China.

School of Automation, Harbin Engineering University, Harbin 150001, People's Republic of China.

出版信息

Rev Sci Instrum. 2021 Sep 1;92(9):095007. doi: 10.1063/5.0057059.

Abstract

The fault diagnosis of hydrogen sensors is of great significance. However, it is difficult to collect data samples for some modes of hydrogen sensor signals, so the data samples may be unbalanced, which can seriously affect the fault diagnosis results. In this paper, we present a novel convolutional neural network (CNN)-based deep convolutional generative adversarial network (DCG) method (DCG-CNN) for gas sensor fault diagnosis. First, we transform the 1D fault signals of the gas sensor into 2D gray images for end-to-end conversion with no signal data information loss. Second, we use the DCG to enrich the 2D gray images of small fault data samples, which results in balanced sensor fault datasets. Third, we use the CNN method to improve the accuracy of fault diagnosis. In order to understand the internal mechanism of the CNN, we further visualize the learned feature maps of fault data samples in each layer of the CNN and try to analyze the reasons for the method's high performance. The fault diagnosis accuracy of the DCG-CNN is shown to be higher than that of other traditional methods.

摘要

氢传感器的故障诊断具有重要意义。然而,对于氢传感器信号的某些模式,很难收集数据样本,因此数据样本可能不均衡,这会严重影响故障诊断结果。在本文中,我们提出了一种基于新型卷积神经网络(CNN)的深度卷积生成对抗网络(DCG)方法(DCG-CNN)用于气体传感器故障诊断。首先,我们将气体传感器的一维故障信号转换为二维灰度图像,以进行端到端转换且不损失信号数据信息。其次,我们使用DCG来丰富小故障数据样本的二维灰度图像,从而得到平衡的传感器故障数据集。第三,我们使用CNN方法提高故障诊断的准确性。为了理解CNN的内部机制,我们进一步可视化CNN各层中故障数据样本的学习特征图,并尝试分析该方法高性能的原因。结果表明,DCG-CNN的故障诊断准确率高于其他传统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验