Kolesnik Kirill, Bryan David, Harley William, Segeritz Philipp, Guest Matthew, Rajagopal Vijay, Collins David J
Biomedical Engineering Department, The University of Melbourne, Melbourne 3010, Australia.
Perioperative and Critical Care Services, Western Health, St. Albans 3021, Australia.
J Acoust Soc Am. 2021 Sep;150(3):2030. doi: 10.1121/10.0006235.
Both the scarcity and environmental impact of disposable face masks, as in the COVID-19 pandemic, have instigated the recent development of reusable masks. Such face masks reduce transmission of infectious agents and particulates, but often impact a user's ability to be understood when materials, such as silicone or hard polymers, are used. In this work, we present a numerical optimisation approach to optimise waveguide topology, where a waveguide is used to transmit and direct sound from the interior of the mask volume to the outside air. This approach allows acoustic energy to be maximised according to specific frequency bands, including those most relevant to human speech. We employ this method to convert a resuscitator mask, made of silicone, into respiration personal protective equipment (PPE) that maximises the speech intelligibility index (SII). We validate this approach experimentally as well, showing improved SII when using the fabricated device. Together, this design represents a unique and effective approach to utilize and adapt available apparatus to filter air while improving the ability to communicate effectively, including in healthcare settings.
一次性口罩的稀缺性及其对环境的影响,如在新冠疫情期间,促使了可重复使用口罩的近期发展。此类口罩能减少传染源和颗粒物的传播,但当使用硅树脂或硬质聚合物等材料时,往往会影响使用者被他人理解的能力。在这项工作中,我们提出了一种数值优化方法来优化波导拓扑结构,其中波导用于将口罩内部的声音传输并导向外部空气。这种方法能够根据特定频段(包括与人类语音最相关的频段)使声能最大化。我们运用此方法将一个由硅树脂制成的复苏面罩转换为呼吸个人防护装备(PPE),使其语音清晰度指数(SII)最大化。我们还通过实验验证了这种方法,结果表明使用制造出的设备时SII有所提高。总之,这种设计代表了一种独特且有效的方法,可利用并改造现有设备来过滤空气,同时提高有效沟通的能力,包括在医疗环境中。