Suppr超能文献

利用无人机多光谱成像和 QTL 作图量化普通小麦的衰老。

Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping.

机构信息

Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.

International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China.

出版信息

Plant Physiol. 2021 Dec 4;187(4):2623-2636. doi: 10.1093/plphys/kiab431.

Abstract

Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.

摘要

气候变化带来的环境压力会改变植物成熟过程中的源库关系,导致过早衰老和产量下降。利用无人机 (UAV) 成像技术的最新进展,可以加速阐明小麦衰老的遗传控制。在这里,我们描述了使用 UAV 通过从多光谱图像中得出的营养指数 (VI) 来量化小麦衰老的方法。我们在田间授粉后不同生长时间点 (TP) 检测到具有高遗传力的衰老以及其对粒重 (GY) 的影响,这在加倍单倍体群体和亲本品种中都得到了证实。使用不同的基于 UAV 的 VI 结合起来选择慢衰老比使用单一的基于地面的植被指数更有效。我们使用 660K 单核苷酸多态性阵列鉴定了与营养生长、衰老和 GY 相关的 28 个数量性状位点 (QTL)。从基于 UAV 的多光谱成像中获得的这些新的 VI 的 17 个 QTL 被映射到染色体 2B、3A、3D、5A、5D、5B 和 6D 上;这些 QTL 以前使用常规表型方法没有报道过。这种综合方法使我们能够鉴定出一个重要的、以前未报道过的与衰老相关的基因座,该基因座位于 5D 染色体上,在籽粒灌浆期间的所有 TPs 中,所有基于 UAV 的 VI 都表现出高达 18.1%的高表型变异。通过在自然群体中开发竞争等位基因特异性 PCR 标记,对该 QTL 进行了慢衰老的验证。我们的结果表明,基于 UAV 的高通量表型分析有利于对小麦衰老的遗传基础进行时间评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc6/8644761/be2bd9377330/kiab431f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验