Suppr超能文献

利用基于无人机的时间光谱指数剖析小麦持绿性状的变化

Using UAV-Based Temporal Spectral Indices to Dissect Changes in the Stay-Green Trait in Wheat.

作者信息

Yu Rui, Cao Xiaofeng, Liu Jia, Nie Ruiqi, Zhang Chuanliang, Yuan Meng, Huang Yanchuan, Liu Xinzhe, Zheng Weijun, Wang Changfa, Wu Tingting, Su Baofeng, Kang Zhensheng, Zeng Qingdong, Han Dejun, Wu Jianhui

机构信息

College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.

State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, China.

出版信息

Plant Phenomics. 2024 Apr 30;6:0171. doi: 10.34133/plantphenomics.0171. eCollection 2024.

Abstract

Stay-green (SG) in wheat is a beneficial trait that increases yield and stress tolerance. However, conventional phenotyping techniques limited the understanding of its genetic basis. Spectral indices (SIs) as non-destructive tools to evaluate crop temporal senescence provide an alternative strategy. Here, we applied SIs to monitor the senescence dynamics of 565 diverse wheat accessions from anthesis to maturation stages over 2 field seasons. Four SIs (normalized difference vegetation index, green normalized difference vegetation index, normalized difference red edge index, and optimized soil-adjusted vegetation index) were normalized to develop relative stay-green scores (RSGS) as the SG indicators. An RSGS-based genome-wide association study identified 47 high-confidence quantitative trait loci (QTL) harboring 3,079 single-nucleotide polymorphisms associated with SG and 1,085 corresponding candidate genes. Among them, 15 QTL overlapped or were adjacent to known SG-related QTL/genes, while the remaining QTL were novel. Notably, a set of favorable haplotypes of SG-related candidate genes such as , , and are increasing following the Green Revolution, further validating the feasibility of the pipeline. This study provided a valuable reference for further quantitative SG and genetic research in diverse wheat panels.

摘要

小麦中的持绿(SG)是一种有益性状,可提高产量和胁迫耐受性。然而,传统的表型分析技术限制了对其遗传基础的理解。光谱指数(SIs)作为评估作物衰老时间的无损工具提供了一种替代策略。在这里,我们应用光谱指数监测了两个田间季节中565份不同小麦品种从开花到成熟阶段的衰老动态。对四个光谱指数(归一化植被指数、绿归一化植被指数、归一化红边指数和优化土壤调节植被指数)进行归一化,以开发相对持绿评分(RSGS)作为持绿指标。基于RSGS的全基因组关联研究确定了47个高可信度数量性状位点(QTL),这些位点包含3079个与持绿相关的单核苷酸多态性和1085个相应的候选基因。其中,15个QTL与已知的持绿相关QTL/基因重叠或相邻,其余QTL为新发现的。值得注意的是,一些与持绿相关的候选基因的有利单倍型,如、和,在绿色革命后不断增加,进一步验证了该流程的可行性。本研究为进一步对不同小麦群体进行持绿定量和遗传研究提供了有价值的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bec/11062509/31d0e99e0998/plantphenomics.0171.fig.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验