Suppr超能文献

利用多任务深度学习从时间序列近程传感中同时预测小麦产量和籽粒蛋白质含量

Simultaneous Prediction of Wheat Yield and Grain Protein Content Using Multitask Deep Learning from Time-Series Proximal Sensing.

作者信息

Sun Zhuangzhuang, Li Qing, Jin Shichao, Song Yunlin, Xu Shan, Wang Xiao, Cai Jian, Zhou Qin, Ge Yan, Zhang Ruinan, Zang Jingrong, Jiang Dong

机构信息

Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Regional Technique Innovation Center for Wheat Production, Ministry of Agriculture, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Collaborative Innovation Centre for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China.

Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.

出版信息

Plant Phenomics. 2022 Mar 29;2022:9757948. doi: 10.34133/2022/9757948. eCollection 2022.

Abstract

Wheat yield and grain protein content (GPC) are two main optimization targets for breeding and cultivation. Remote sensing provides nondestructive and early predictions of yield and GPC, respectively. However, whether it is possible to simultaneously predict yield and GPC in one model and the accuracy and influencing factors are still unclear. In this study, we made a systematic comparison of different deep learning models in terms of data fusion, time-series feature extraction, and multitask learning. The results showed that time-series data fusion significantly improved yield and GPC prediction accuracy with values of 0.817 and 0.809. Multitask learning achieved simultaneous prediction of yield and GPC with comparable accuracy to the single-task model. We further proposed a two-to-two model that combines data fusion (two kinds of data sources for input) and multitask learning (two outputs) and compared different feature extraction layers, including RNN (recurrent neural network), LSTM (long short-term memory), CNN (convolutional neural network), and attention module. The two-to-two model with the attention module achieved the best prediction accuracy for yield ( = 0.833) and GPC ( = 0.846). The temporal distribution of feature importance was visualized based on the attention feature values. Although the temporal patterns of structural traits and spectral traits were inconsistent, the overall importance of both structural traits and spectral traits at the postanthesis stage was more important than that at the preanthesis stage. This study provides new insights into the simultaneous prediction of yield and GPC using deep learning from time-series proximal sensing, which may contribute to the accurate and efficient predictions of agricultural production.

摘要

小麦产量和籽粒蛋白质含量(GPC)是育种和栽培的两个主要优化目标。遥感分别提供了产量和GPC的无损和早期预测。然而,是否有可能在一个模型中同时预测产量和GPC,以及其准确性和影响因素仍不清楚。在本研究中,我们在数据融合、时间序列特征提取和多任务学习方面对不同的深度学习模型进行了系统比较。结果表明,时间序列数据融合显著提高了产量和GPC的预测准确性,相关系数分别为0.817和0.809。多任务学习实现了产量和GPC的同时预测,其准确性与单任务模型相当。我们进一步提出了一种二对二模型,该模型结合了数据融合(两种输入数据源)和多任务学习(两个输出),并比较了不同的特征提取层,包括RNN(递归神经网络)、LSTM(长短期记忆)、CNN(卷积神经网络)和注意力模块。带有注意力模块的二对二模型在产量预测(相关系数 = 0.833)和GPC预测(相关系数 = 0.846)方面取得了最佳预测准确性。基于注意力特征值对特征重要性的时间分布进行了可视化。虽然结构性状和光谱性状的时间模式不一致,但花后阶段结构性状和光谱性状的总体重要性均高于花前阶段。本研究为利用时间序列近感深度学习同时预测产量和GPC提供了新的见解,这可能有助于农业生产的准确和高效预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40f4/8988204/e9fc92443995/PLANTPHENOMICS2022-9757948.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验