文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis.

作者信息

Kumar Yogesh, Gupta Surbhi, Singla Ruchi, Hu Yu-Chen

机构信息

Department of Computer Engineering, Indus Institute of Technology & Engineering, Indus University, Rancharda, Via: Shilaj, Ahmedabad, Gujarat 382115 India.

School of Computer Science and Engineering, Model Institute of Engineering and Technology, Kot bhalwal, Jammu, J&K 181122 India.

出版信息

Arch Comput Methods Eng. 2022;29(4):2043-2070. doi: 10.1007/s11831-021-09648-w. Epub 2021 Sep 27.


DOI:10.1007/s11831-021-09648-w
PMID:34602811
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8475374/
Abstract

Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using conventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the different researchers and highlighted the limitations of the existing literature, and performed the comparison using various parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple techniques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/3c3a8e9d7197/11831_2021_9648_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/45b2c3bd0781/11831_2021_9648_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/3db8bd16c29d/11831_2021_9648_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/6028934945a0/11831_2021_9648_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/a26aae772395/11831_2021_9648_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/53afe2de4762/11831_2021_9648_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/ca41e7ba604b/11831_2021_9648_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/c2b9a9cb550a/11831_2021_9648_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/21ccddf2f9e0/11831_2021_9648_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/cc17cea58c78/11831_2021_9648_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/be4879c1b622/11831_2021_9648_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/a732ea961ea2/11831_2021_9648_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/7529fec54d60/11831_2021_9648_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/3c3a8e9d7197/11831_2021_9648_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/45b2c3bd0781/11831_2021_9648_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/3db8bd16c29d/11831_2021_9648_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/6028934945a0/11831_2021_9648_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/a26aae772395/11831_2021_9648_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/53afe2de4762/11831_2021_9648_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/ca41e7ba604b/11831_2021_9648_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/c2b9a9cb550a/11831_2021_9648_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/21ccddf2f9e0/11831_2021_9648_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/cc17cea58c78/11831_2021_9648_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/be4879c1b622/11831_2021_9648_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/a732ea961ea2/11831_2021_9648_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/7529fec54d60/11831_2021_9648_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8475374/3c3a8e9d7197/11831_2021_9648_Fig13_HTML.jpg

相似文献

[1]
A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis.

Arch Comput Methods Eng. 2022

[2]
Combating COVID-19 Crisis using Artificial Intelligence (AI) Based Approach: Systematic Review.

Curr Top Med Chem. 2024

[3]
Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda.

J Ambient Intell Humaniz Comput. 2023

[4]
Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field.

Front Bioeng Biotechnol. 2022-7-7

[5]
Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review.

BMC Oral Health. 2024-2-24

[6]
Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-analysis.

JAMA Netw Open. 2023-3-1

[7]
Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review.

EClinicalMedicine. 2024-5-27

[8]
Artificial Intelligence for the Prediction and Early Diagnosis of Pancreatic Cancer: Scoping Review.

J Med Internet Res. 2023-3-31

[9]
Prognostic role of artificial intelligence among patients with hepatocellular cancer: A systematic review.

World J Gastroenterol. 2020-11-14

[10]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

引用本文的文献

[1]
Cost-Efficient Early Diagnostic Tool for Lung Cancer: Explainable AI in Clinical Systems.

Technol Cancer Res Treat. 2025

[2]
De-Escalating Anticancer Treatment: Watch Your Step.

Cancers (Basel). 2025-7-26

[3]
Investigating the Potential of Generative AI Clinical Case-Based Simulations on Radiography Education: A Pilot Study.

J Imaging Inform Med. 2025-7-8

[4]
Methodological and reporting quality of machine learning studies on cancer diagnosis, treatment, and prognosis.

Front Oncol. 2025-4-14

[5]
Hallmarks of artificial intelligence contributions to precision oncology.

Nat Cancer. 2025-3

[6]
Innovative laboratory techniques shaping cancer diagnosis and treatment in developing countries.

Discov Oncol. 2025-2-8

[7]
Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers.

Front Artif Intell. 2024-12-20

[8]
Survivability prognosis of lung cancer patients with comorbidities-a Gaussian Bayesian network model.

Med Biol Eng Comput. 2025-4

[9]
Machine learning based on alcohol drinking-gut microbiota-liver axis in predicting the occurrence of early-stage hepatocellular carcinoma.

BMC Cancer. 2024-11-29

[10]
ASSIGN score and cancer risk in the Scottish Heart Health Extended Cohort (SHHEC) study.

BJC Rep. 2024-10-1

本文引用的文献

[1]
Breast Tumor Classification Using an Ensemble Machine Learning Method.

J Imaging. 2020-5-29

[2]
Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times.

BMC Med Imaging. 2021-5-8

[3]
Automated detection and segmentation of thoracic lymph nodes from CT using 3D foveal fully convolutional neural networks.

BMC Med Imaging. 2021-4-13

[4]
High precision localization of pulmonary nodules on chest CT utilizing axial slice number labels.

BMC Med Imaging. 2021-4-9

[5]
Robust Machine Learning for Colorectal Cancer Risk Prediction and Stratification.

Front Big Data. 2020-3-10

[6]
MRI-based radiomics approach for differentiation of hypovascular non-functional pancreatic neuroendocrine tumors and solid pseudopapillary neoplasms of the pancreas.

BMC Med Imaging. 2021-2-23

[7]
Breast cancer and background parenchymal enhancement at breast magnetic resonance imaging: a meta-analysis.

BMC Med Imaging. 2021-2-19

[8]
Machine Learning Based Automated Segmentation and Hybrid Feature Analysis for Diabetic Retinopathy Classification Using Fundus Image.

Entropy (Basel). 2020-5-19

[9]
Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images.

Med Image Anal. 2021-1

[10]
Lysine-specific histone demethylase 1A (LSD1) in cervical cancer.

J Cancer Res Clin Oncol. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索