Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA, 94143, USA.
George Washington University School of Medicine, 2300 I St NW, Washington, DC, 20052, USA.
BMC Med Imaging. 2021 Apr 9;21(1):66. doi: 10.1186/s12880-021-00594-4.
Reidentification of prior nodules for temporal comparison is an important but time-consuming step in lung cancer screening. We develop and evaluate an automated nodule detector that utilizes the axial-slice number of nodules found in radiology reports to generate high precision nodule predictions.
888 CTs from Lung Nodule Analysis were used to train a 2-dimensional (2D) object detection neural network. A pipeline of 2D object detection, 3D unsupervised clustering, false positive reduction, and axial-slice numbers were used to generate nodule candidates. 47 CTs from the National Lung Cancer Screening Trial (NLST) were used for model evaluation.
Our nodule detector achieved a precision of 0.962 at a recall of 0.573 on the NLST test set for any nodule. When adjusting for unintended nodule predictions, we achieved a precision of 0.931 at a recall 0.561, which corresponds to 0.06 false positives per CT. Error analysis revealed better detection of nodules with soft tissue attenuation compared to ground glass and undeterminable attenuation. Nodule margins, size, location, and patient demographics did not differ between correct and incorrect predictions.
Utilization of axial-slice numbers from radiology reports allowed for development of a lung nodule detector with a low false positive rate compared to prior feature-engineering and machine learning approaches. This high precision nodule detector can reduce time spent on reidentification of prior nodules during lung cancer screening and can rapidly develop new institutional datasets to explore novel applications of computer vision in lung cancer imaging.
在肺癌筛查中,对先前结节进行时间比较的重新识别是一项重要但耗时的步骤。我们开发并评估了一种自动结节探测器,该探测器利用放射学报告中发现的结节轴向切片数生成高精度的结节预测。
使用 888 例来自 Lung Nodule Analysis 的 CT 来训练二维(2D)目标检测神经网络。使用 2D 目标检测、3D 无监督聚类、假阳性减少和轴向切片数的流水线生成结节候选物。使用来自国家肺癌筛查试验(NLST)的 47 例 CT 进行模型评估。
我们的结节探测器在 NLST 测试集中的任何结节的召回率为 0.573 时,精度达到 0.962。当针对意外的结节预测进行调整时,我们的精度达到 0.931,召回率为 0.561,这相当于每例 CT 有 0.06 个假阳性。误差分析表明,与磨玻璃和无法确定的衰减相比,软组织衰减的结节检测效果更好。正确预测和错误预测的结节边缘、大小、位置和患者人口统计学特征没有差异。
与之前的特征工程和机器学习方法相比,利用放射学报告中的轴向切片数可以开发出一种具有低假阳性率的肺结节探测器。这种高精度的结节探测器可以减少肺癌筛查中重新识别先前结节的时间,并可以快速开发新的机构数据集,以探索计算机视觉在肺癌成像中的新应用。