Suppr超能文献

合并症肺癌患者的生存预后——一种高斯贝叶斯网络模型

Survivability prognosis of lung cancer patients with comorbidities-a Gaussian Bayesian network model.

作者信息

Tseng Shih-Hsien, Wang Kung-Min, Su Ting-Yang, Wang Kung-Jeng

机构信息

Department of Industrial Management, National Taiwan University of Science and Technology (NTUST), No.43, Sec. 4, Keelung Rd., Da'an Dist., Taipei, 106, Taiwan, ROC.

Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Shilin District, Taipei, 111, Taiwan, ROC.

出版信息

Med Biol Eng Comput. 2025 Apr;63(4):1201-1213. doi: 10.1007/s11517-024-03261-2. Epub 2024 Dec 18.

Abstract

Comorbidities are influencing factors that cause lung cancer. An accurate survivability prediction model is required considering these confounding factors (a variety of comorbidities and treatments). The study developed a conditional Gaussian Bayesian network (CGBN) model to predict the related survival time with likelihood under various conditions. The lung cancer patients were collected from the National Health Insurance Research Database in Taiwan. Six major chronic diseases (i.e., pulmonary tuberculosis, COPD, kidney failure, diabetes mellitus, stroke, and liver disease) are investigated. A total of 2875 lung cancer cases with key comorbidities were selected. This study examined three types of lung cancer treatment: surgery, chemotherapy, and targeted therapy. The study outcomes provided the likelihood of survival time occurrences. Survival analysis indicates that diabetes mellitus and liver disease are significantly riskier than the other comorbidities for lung cancer patients. The proposed CGBN model achieved high accuracy as compared to the existing literature. The proposed CGBN model is advantageous for modeling the relationship between numerical and categorical influencing factors and response variables for lung cancer with comorbidities. The proposed model facilitates the flexible and accurate estimation of various lung cancer-related queries.

摘要

合并症是导致肺癌的影响因素。考虑到这些混杂因素(各种合并症和治疗方法),需要一个准确的生存预测模型。该研究开发了一种条件高斯贝叶斯网络(CGBN)模型,以在各种条件下预测相关的生存时间可能性。肺癌患者来自台湾国民健康保险研究数据库。研究了六种主要慢性病(即肺结核、慢性阻塞性肺疾病、肾衰竭、糖尿病、中风和肝病)。共选择了2875例患有关键合并症的肺癌病例。本研究考察了三种肺癌治疗方式:手术、化疗和靶向治疗。研究结果提供了生存时间出现的可能性。生存分析表明,对于肺癌患者,糖尿病和肝病比其他合并症的风险显著更高。与现有文献相比,所提出的CGBN模型具有较高的准确性。所提出的CGBN模型有利于对合并症肺癌的数值和分类影响因素与反应变量之间的关系进行建模。所提出的模型有助于灵活、准确地估计各种与肺癌相关的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验