Suppr超能文献

厌氧共消化过程中庆大霉素菌丝残渣与小麦秸秆混合比例对甲烷产生、微生物群落及抗生素抗性基因的影响

Responses of methane production, microbial community and antibiotic resistance genes to the mixing ratio of gentamicin mycelial residues and wheat straw in anaerobic co-digestion process.

作者信息

Jiang Mingye, Song Siqi, Liu Huiling, Dai Xiaohu, Wang Peng

机构信息

School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.

School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.

出版信息

Sci Total Environ. 2022 Feb 1;806(Pt 2):150488. doi: 10.1016/j.scitotenv.2021.150488. Epub 2021 Sep 23.

Abstract

Anaerobic co-digestion (AcoD) of gentamicin mycelial residues (GMRs), a kind of nitrogen-rich biowaste, and wheat straw (WS) is an attractive technology for the recycling of GMRs. However, the effects of the co-substrate ratio on methane production, system stability and antimicrobial resistance during co-digestion remain unclear. Thus, this study aimed to fill in the blanks through AcoD of GMRs and WS with different mixing ratios (1:0, 2:1, 1:1, 1:2, 0:1, VS basis) via batch tests. Results showed that AcoD facilitated methane production than mono anaerobic digestion and reduced the accumulation of the toxic substances, such as ammonia nitrogen and humic-like substances. The maximum methane production was obtained at the reactors with the mixing ratio of 1:1 and 1:2 (R-1:1 and R-1:2), which matched with the relative abundance of key enzymes related to methanogenesis predicted by PICRUSt. Microbial community analysis indicated that Methanosaeta was the most dominant methanogen in the AcoD reactors. The highest relative abundance of Methanosaeta (45.1%) was obtained at R-1:1 due to the appropriate AcoD conditions, thus, providing greater possibilities for high stability of AcoD system. Additionally, AcoD of the GMRs and WS under the mixing ratio of 1:1 and 1:2 did not prompt the increase of antibiotic resistance genes (ARGs). Not only that, the likelihood of horizontal gene transfer declined in R-1:1 due to the weaker connection and transport between host and recipient bacteria. Findings of this study suggested that the suitable mixing ratio of GMRs and WS contributes to methane production and system stability, and reduces the dissemination risks of ARGs.

摘要

庆大霉素菌丝残渣(GMRs)是一种富含氮的生物废弃物,与小麦秸秆(WS)进行厌氧共消化(AcoD)是一种颇具吸引力的GMRs回收利用技术。然而,共底物比例对共消化过程中甲烷产生、系统稳定性和抗微生物抗性的影响仍不明确。因此,本研究旨在通过批次试验,对不同混合比例(1:0、2:1、1:1、1:2、0:1,以挥发性固体计)的GMRs和WS进行AcoD来填补这一空白。结果表明,与单一厌氧消化相比,AcoD促进了甲烷产生,并减少了氨氮和类腐殖质等有毒物质的积累。在混合比例为1:1和1:2的反应器(R-1:1和R-1:2)中获得了最大甲烷产量,这与PICRUSt预测的与产甲烷相关的关键酶的相对丰度相匹配。微生物群落分析表明,甲烷八叠球菌是AcoD反应器中最主要的产甲烷菌。由于合适的AcoD条件,在R-1:1中获得了最高的甲烷八叠球菌相对丰度(45.1%),因此,为AcoD系统的高稳定性提供了更大可能性。此外,在1:1和1:2的混合比例下,GMRs和WS的AcoD并未促使抗生素抗性基因(ARGs)增加。不仅如此,由于宿主菌和受体菌之间的连接和转运较弱,R-1:1中水平基因转移的可能性降低。本研究结果表明,GMRs和WS的合适混合比例有助于甲烷产生和系统稳定性,并降低ARGs的传播风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验