Suppr超能文献

片状粘土纳米颗粒将 RNA 递送到发育中的花粉中,从而有效地沉默靶基因。

Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene.

机构信息

Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.

出版信息

Plant Physiol. 2021 Oct 5;187(2):886-899. doi: 10.1093/plphys/kiab303.

Abstract

Topical application of double-stranded RNA (dsRNA) can induce RNA interference (RNAi) and modify traits in plants without genetic modification. However, delivering dsRNA into plant cells remains challenging. Using developing tomato (Solanum lycopersicum) pollen as a model plant cell system, we demonstrate that layered double hydroxide (LDH) nanoparticles up to 50 nm in diameter are readily internalized, particularly by early bicellular pollen, in both energy-dependent and energy-independent manners and without physical or chemical aids. More importantly, these LDH nanoparticles efficiently deliver dsRNA into tomato pollen within 2-4 h of incubation, resulting in an 89% decrease in transgene reporter mRNA levels in early bicellular pollen 3-d post-treatment, compared with a 37% decrease induced by the same dose of naked dsRNA. The target gene silencing is dependent on the LDH particle size, the dsRNA dose, the LDH-dsRNA complexing ratio, and the treatment time. Our findings indicate that LDH nanoparticles are an effective nonviral vector for the effective delivery of dsRNA and other biomolecules into plant cells.

摘要

双层氢氧化物(LDH)纳米颗粒可高效递送入花粉细胞并诱导基因沉默

双层氢氧化物(LDH)纳米颗粒作为一种非病毒载体,可将双链 RNA(dsRNA)及其它生物分子递送入植物细胞

摘要:将双链 RNA(dsRNA)进行局部施用能够在不进行基因修饰的情况下诱导 RNA 干扰(RNAi)并改变植物的特性。然而,将 dsRNA 递送入植物细胞仍然具有挑战性。本研究以发育中的番茄(Solanum lycopersicum)花粉作为植物细胞模型系统,证明了直径高达 50nm 的层状双氢氧化物(LDH)纳米颗粒能够以能量依赖和非依赖的方式被轻易地内吞,尤其是早期的二细胞花粉,而无需物理或化学辅助。更为重要的是,这些 LDH 纳米颗粒能够在孵育 2-4 小时内将 dsRNA 高效递送入番茄花粉中,与相同剂量的裸露 dsRNA 相比,处理 3 天后早期二细胞花粉中转基因报告 mRNA 水平降低了 89%。靶基因沉默依赖于 LDH 纳米颗粒的粒径、dsRNA 的剂量、LDH-dsRNA 复合物的比例和处理时间。我们的研究结果表明,LDH 纳米颗粒是一种有效的非病毒载体,可将 dsRNA 和其它生物分子有效递送入植物细胞。

相似文献

1
Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene.
Plant Physiol. 2021 Oct 5;187(2):886-899. doi: 10.1093/plphys/kiab303.
2
Clay nanoparticles efficiently deliver small interfering RNA to intact plant leaf cells.
Plant Physiol. 2022 Nov 28;190(4):2187-2202. doi: 10.1093/plphys/kiac430.
3
Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses.
Nat Plants. 2017 Jan 9;3:16207. doi: 10.1038/nplants.2016.207.
4
Methods for Delivery of dsRNAs for Agricultural Pest Control: The Case of Lepidopteran Pests.
Methods Mol Biol. 2022;2360:317-345. doi: 10.1007/978-1-0716-1633-8_23.
5
BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
J Integr Plant Biol. 2022 Nov;64(11):2187-2198. doi: 10.1111/jipb.13353. Epub 2022 Oct 11.
6
Development of Catechin, Poly-l-lysine, and Double-Stranded RNA Nanoparticles.
ACS Appl Bio Mater. 2021 May 17;4(5):4310-4318. doi: 10.1021/acsabm.1c00109. Epub 2021 May 4.
7
Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves.
Planta. 2017 Dec;246(6):1233-1241. doi: 10.1007/s00425-017-2776-7. Epub 2017 Sep 18.
9
Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta.
Pest Manag Sci. 2020 Jan;76(1):287-295. doi: 10.1002/ps.5513. Epub 2019 Jul 16.

引用本文的文献

1
Advances in RNAi-based nanoformulations: revolutionizing crop protection and stress tolerance in agriculture.
Nanoscale Adv. 2025 Mar 4;7(7):1768-1783. doi: 10.1039/d5na00044k. eCollection 2025 Mar 25.
4
Nanodelivery of nucleic acids for plant genetic engineering.
Discov Nano. 2025 Feb 12;20(1):31. doi: 10.1186/s11671-025-04207-9.
5
Leveraging RNA interference technology for selective and sustainable crop protection.
Front Plant Sci. 2024 Dec 24;15:1502015. doi: 10.3389/fpls.2024.1502015. eCollection 2024.
6
Lysozyme-coated nanoparticles for active uptake and delivery of synthetic RNA and plasmid-encoded genes in plants.
Nat Plants. 2025 Jan;11(1):131-144. doi: 10.1038/s41477-024-01882-x. Epub 2025 Jan 2.
7
Nanoparticle-mediated dsRNA delivery for precision insect pest control: a comprehensive review.
Mol Biol Rep. 2024 Feb 24;51(1):355. doi: 10.1007/s11033-023-09187-6.
8
Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells.
Int J Mol Sci. 2023 Nov 23;24(23):16665. doi: 10.3390/ijms242316665.
9
Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking.
Curr Opin Plant Biol. 2023 Dec;76:102441. doi: 10.1016/j.pbi.2023.102441. Epub 2023 Sep 9.
10
RNA-Based Control of Fungal Pathogens in Plants.
Int J Mol Sci. 2023 Aug 3;24(15):12391. doi: 10.3390/ijms241512391.

本文引用的文献

1
Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction.
Nanoscale. 2021 Apr 30;13(16):7533-7549. doi: 10.1039/d1nr00881a.
2
Nanoparticle-mediated gene transformation strategies for plant genetic engineering.
Plant J. 2020 Nov;104(4):880-891. doi: 10.1111/tpj.14973. Epub 2020 Sep 23.
3
Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown.
Sci Adv. 2020 Jun 24;6(26):eaaz0495. doi: 10.1126/sciadv.aaz0495. eCollection 2020 Jun.
4
Nanoparticle Charge and Size Control Foliar Delivery Efficiency to Plant Cells and Organelles.
ACS Nano. 2020 Jul 28;14(7):7970-7986. doi: 10.1021/acsnano.9b09178. Epub 2020 Jul 13.
5
Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana.
Nat Nanotechnol. 2020 Sep;15(9):755-760. doi: 10.1038/s41565-020-0707-4. Epub 2020 Jun 22.
6
7
DNA nanostructures coordinate gene silencing in mature plants.
Proc Natl Acad Sci U S A. 2019 Apr 9;116(15):7543-7548. doi: 10.1073/pnas.1818290116. Epub 2019 Mar 25.
8
Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers.
Nat Nanotechnol. 2019 May;14(5):447-455. doi: 10.1038/s41565-019-0375-4. Epub 2019 Feb 25.
9
High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants.
Nat Nanotechnol. 2019 May;14(5):456-464. doi: 10.1038/s41565-019-0382-5. Epub 2019 Feb 25.
10
Genome-Scale Sequence Disruption Following Biolistic Transformation in Rice and Maize.
Plant Cell. 2019 Feb;31(2):368-383. doi: 10.1105/tpc.18.00613. Epub 2019 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验