Suppr超能文献

预测护士实施程序性镇静期间的长时间呼吸暂停:机器学习研究

Predicting Prolonged Apnea During Nurse-Administered Procedural Sedation: Machine Learning Study.

作者信息

Conway Aaron, Jungquist Carla R, Chang Kristina, Kamboj Navpreet, Sutherland Joanna, Mafeld Sebastian, Parotto Matteo

机构信息

Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON, Canada.

Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada.

出版信息

JMIR Perioper Med. 2021 Oct 5;4(2):e29200. doi: 10.2196/29200.

Abstract

BACKGROUND

Capnography is commonly used for nurse-administered procedural sedation. Distinguishing between capnography waveform abnormalities that signal the need for clinical intervention for an event and those that do not indicate the need for intervention is essential for the successful implementation of this technology into practice. It is possible that capnography alarm management may be improved by using machine learning to create a "smart alarm" that can alert clinicians to apneic events that are predicted to be prolonged.

OBJECTIVE

To determine the accuracy of machine learning models for predicting at the 15-second time point if apnea will be prolonged (ie, apnea that persists for >30 seconds).

METHODS

A secondary analysis of an observational study was conducted. We selected several candidate models to evaluate, including a random forest model, generalized linear model (logistic regression), least absolute shrinkage and selection operator regression, ridge regression, and the XGBoost model. Out-of-sample accuracy of the models was calculated using 10-fold cross-validation. The net benefit decision analytic measure was used to assist with deciding whether using the models in practice would lead to better outcomes on average than using the current default capnography alarm management strategies. The default strategies are the aggressive approach, in which an alarm is triggered after brief periods of apnea (typically 15 seconds) and the conservative approach, in which an alarm is triggered for only prolonged periods of apnea (typically >30 seconds).

RESULTS

A total of 384 apneic events longer than 15 seconds were observed in 61 of the 102 patients (59.8%) who participated in the observational study. Nearly half of the apneic events (180/384, 46.9%) were prolonged. The random forest model performed the best in terms of discrimination (area under the receiver operating characteristic curve 0.66) and calibration. The net benefit associated with the random forest model exceeded that associated with the aggressive strategy but was lower than that associated with the conservative strategy.

CONCLUSIONS

Decision curve analysis indicated that using a random forest model would lead to a better outcome for capnography alarm management than using an aggressive strategy in which alarms are triggered after 15 seconds of apnea. The model would not be superior to the conservative strategy in which alarms are only triggered after 30 seconds.

摘要

背景

二氧化碳描记法常用于护士实施的程序性镇静。区分表明需要对某事件进行临床干预的二氧化碳描记波形异常与那些不表明需要干预的异常,对于将该技术成功应用于实践至关重要。通过使用机器学习创建一个“智能警报”来提醒临床医生注意预计会延长的呼吸暂停事件,有可能改善二氧化碳描记法警报管理。

目的

确定机器学习模型在15秒时间点预测呼吸暂停是否会延长(即持续超过30秒的呼吸暂停)的准确性。

方法

对一项观察性研究进行二次分析。我们选择了几个候选模型进行评估,包括随机森林模型、广义线性模型(逻辑回归)、最小绝对收缩和选择算子回归、岭回归以及XGBoost模型。使用10折交叉验证计算模型的样本外准确性。净效益决策分析指标用于协助决定在实践中使用这些模型是否平均而言会比使用当前默认的二氧化碳描记法警报管理策略带来更好的结果。默认策略是激进方法,即在短暂呼吸暂停(通常为15秒)后触发警报;以及保守方法,即仅在长时间呼吸暂停(通常>30秒)时触发警报。

结果

在参与观察性研究的102名患者中的61名(59.8%)中,共观察到384次持续超过15秒的呼吸暂停事件。近一半的呼吸暂停事件(180/384,46.9%)是延长的。随机森林模型在区分度(受试者操作特征曲线下面积为0.66)和校准方面表现最佳。与随机森林模型相关的净效益超过了与激进策略相关的净效益,但低于与保守策略相关的净效益。

结论

决策曲线分析表明,对于二氧化碳描记法警报管理,使用随机森林模型比使用在呼吸暂停15秒后触发警报的激进策略会带来更好的结果。该模型不会优于仅在30秒后触发警报的保守策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2279/8527383/5d7195919f1b/periop_v4i2e29200_fig1.jpg

相似文献

2
3
Pre-apneic capnography waveform abnormalities during procedural sedation and analgesia.
J Clin Monit Comput. 2020 Oct;34(5):1061-1068. doi: 10.1007/s10877-019-00391-z. Epub 2019 Sep 30.
4
Integrated pulmonary index during procedural sedation and analgesia: A cluster-randomized trial.
J Adv Nurs. 2025 Sep;81(9):5563-5572. doi: 10.1111/jan.16286. Epub 2024 Jun 26.
5
Microstream capnography improves patient monitoring during moderate sedation: a randomized, controlled trial.
Pediatrics. 2006 Jun;117(6):e1170-8. doi: 10.1542/peds.2005-1709. Epub 2006 May 15.
6
Machine learning-based risk prediction of hypoxemia for outpatients undergoing sedation colonoscopy: a practical clinical tool.
Postgrad Med. 2024 Jan;136(1):84-94. doi: 10.1080/00325481.2024.2313448. Epub 2024 Feb 5.
7
Deep learning classification of capnography waveforms: secondary analysis of the PRODIGY study.
J Clin Monit Comput. 2023 Oct;37(5):1327-1339. doi: 10.1007/s10877-023-01028-y. Epub 2023 May 13.
10
Capnography monitoring in procedural intravenous sedation: a systematic review and meta-analysis.
Clin Oral Investig. 2020 Nov;24(11):3761-3770. doi: 10.1007/s00784-020-03395-1. Epub 2020 Jun 16.

引用本文的文献

1
Decoding machine learning in nursing research: A scoping review of effective algorithms.
J Nurs Scholarsh. 2025 Jan;57(1):119-129. doi: 10.1111/jnu.13026. Epub 2024 Sep 18.
2
Integrated pulmonary index during procedural sedation and analgesia: A cluster-randomized trial.
J Adv Nurs. 2025 Sep;81(9):5563-5572. doi: 10.1111/jan.16286. Epub 2024 Jun 26.
3
Deep learning classification of capnography waveforms: secondary analysis of the PRODIGY study.
J Clin Monit Comput. 2023 Oct;37(5):1327-1339. doi: 10.1007/s10877-023-01028-y. Epub 2023 May 13.
4
Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
JMIR Med Inform. 2022 Aug 30;10(8):e37578. doi: 10.2196/37578.

本文引用的文献

1
Advancing nursing participation in user-centred design.
J Res Nurs. 2020 May;25(3):226-238. doi: 10.1177/1744987120913590. Epub 2020 May 3.
2
Impact of Alarm Fatigue on the Work of Nurses in an Intensive Care Environment-A Systematic Review.
Int J Environ Res Public Health. 2020 Nov 13;17(22):8409. doi: 10.3390/ijerph17228409.
3
Hypotension Prediction Index for Prevention of Hypotension during Moderate- to High-risk Noncardiac Surgery.
Anesthesiology. 2020 Dec 1;133(6):1214-1222. doi: 10.1097/ALN.0000000000003557.
4
Vital sign abnormalities as predictors of clinical deterioration in subacute care patients: A prospective case-time-control study.
Int J Nurs Stud. 2020 Aug;108:103612. doi: 10.1016/j.ijnurstu.2020.103612. Epub 2020 May 11.
5
Avoiding and Managing Error in Interventional Radiology Practice: Tips and Tools.
Can Assoc Radiol J. 2020 Nov;71(4):528-535. doi: 10.1177/0846537119899215. Epub 2020 Feb 26.
8
Pre-apneic capnography waveform abnormalities during procedural sedation and analgesia.
J Clin Monit Comput. 2020 Oct;34(5):1061-1068. doi: 10.1007/s10877-019-00391-z. Epub 2019 Sep 30.
10
Impact of Respiratory Compromise in Inpatient Interventional Radiology Procedures with Moderate Sedation in the United States.
Radiology. 2019 Sep;292(3):702-710. doi: 10.1148/radiol.2019182455. Epub 2019 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验