Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
CombinAble.AI, AION Labs, 4 Oppenheimer, Rehovot, 7670104, Israel.
Commun Biol. 2024 Sep 17;7(1):1159. doi: 10.1038/s42003-024-06880-5.
The dissociation rate, or its reciprocal, the residence time (τ), is a crucial parameter for understanding the duration and biological impact of biomolecular interactions. Accurate prediction of τ is essential for understanding protein-protein interactions (PPIs) and identifying potential drug targets or modulators for tackling diseases. Conventional molecular dynamics simulation techniques are inherently constrained by their limited timescales, making it challenging to estimate residence times, which typically range from minutes to hours. Building upon its successful application in protein-small molecule systems, τ-Random Acceleration Molecular Dynamics (τRAMD) is here investigated for estimating dissociation rates of protein-protein complexes. τRAMD enables the observation of unbinding events on the nanosecond timescale, facilitating rapid and efficient computation of relative residence times. We tested this methodology for three protein-protein complexes and their extensive mutant datasets, achieving good agreement between computed and experimental data. By combining τRAMD with MD-IFP (Interaction Fingerprint) analysis, dissociation mechanisms were characterized and their sensitivity to mutations investigated, enabling the identification of molecular hotspots for selective modulation of dissociation kinetics. In conclusion, our findings underscore the versatility of τRAMD as a simple and computationally efficient approach for computing relative protein-protein dissociation rates and investigating dissociation mechanisms, thereby aiding the design of PPI modulators.
离解速率(或其倒数,停留时间 τ)是理解生物分子相互作用持续时间和生物学影响的关键参数。准确预测 τ 对于理解蛋白质-蛋白质相互作用(PPIs)和识别潜在的药物靶点或调节剂以解决疾病至关重要。传统的分子动力学模拟技术受到其有限时间尺度的固有限制,因此难以估计停留时间,停留时间通常为数分钟到数小时。在成功应用于蛋白质-小分子系统的基础上,τ-随机加速分子动力学(τRAMD)现被用于估计蛋白质-蛋白质复合物的离解速率。τRAMD 能够在纳秒时间尺度上观察到解联事件,从而能够快速有效地计算相对停留时间。我们在三个蛋白质-蛋白质复合物及其广泛的突变体数据集上测试了这种方法,计算数据与实验数据之间具有良好的一致性。通过将 τRAMD 与 MD-IFP(相互作用指纹)分析相结合,我们对离解机制进行了表征,并研究了它们对突变的敏感性,从而能够确定用于选择性调节离解动力学的分子热点。总之,我们的研究结果强调了 τRAMD 的多功能性,它是一种简单且计算效率高的方法,可用于计算相对蛋白质-蛋白质离解速率和研究离解机制,从而有助于设计 PPI 调节剂。