Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA.
Biochim Biophys Acta Bioenerg. 2022 Jan 1;1863(1):148503. doi: 10.1016/j.bbabio.2021.148503. Epub 2021 Oct 2.
The uptake of inorganic carbon in cyanobacteria is facilitated by an energetically intensive CO-concentrating mechanism (CCM). This includes specialized Type-1 NDH complexes that function to couple photosynthetic redox energy to CO hydration forming the bicarbonate that accumulates to high cytoplasmic concentrations during the operation of the CCM, required for effective carbon fixation. Here we used a Synechococcus PCC7942 expression system to investigate the role of conserved histidine and cysteine residues in the CupB (also designated, ChpX) protein, which has been hypothesized to participate in a vectoral CO hydration reaction near the interface between CupB protein and the proton-pumping subunits of the NDH-1 complex. A homology model has been constructed and most of the targeted conserved residues are in the vicinity of a Zn ion modeled to form the catalytic site of deprotonation and CO hydration. Growth and CO uptake assays show that the most severe defects in activity among the targeted residues are due to a substitution of the predicted Zn ligand, CupB-His86. Mutations at other sites produced intermediate effects. Proteomic analysis revealed that some amino acid substitution mutations of CupB caused the induction of bicarbonate uptake proteins to a greater extent than complete deletion of CupB, despite growth under CO-enriched conditions. The results are discussed in terms of hypotheses on the catalytic function of this unusual enzyme.
蓝藻的无机碳摄取是由一种能量密集型 CO 浓缩机制(CCM)促成的。这包括专门的 Type-1 NDH 复合物,其功能是将光合氧化还原能量偶联到 CO 水合作用,形成碳酸氢盐,在 CCM 运行期间,碳酸氢盐在细胞质中积累到高浓度,这对于有效的碳固定是必需的。在这里,我们使用 Synechococcus PCC7942 表达系统来研究保守组氨酸和半胱氨酸残基在 CupB(也称为 ChpX)蛋白中的作用,该蛋白被假设参与 CupB 蛋白与 NDH-1 复合物质子泵亚基之间界面处的 CO 水合反应的载体。已经构建了同源模型,并且大多数靶向保守残基位于 Zn 离子的附近,该 Zn 离子被建模为形成去质子化和 CO 水合的催化位点。生长和 CO 摄取测定表明,在靶向残基中,活性的最严重缺陷是由于预测的 Zn 配体 CupB-His86 的取代。其他位点的突变产生了中等效应。蛋白质组学分析表明,CupB 的一些氨基酸取代突变导致碳酸氢盐摄取蛋白的诱导程度大于 CupB 的完全缺失,尽管在 CO 富集条件下生长。结果根据对这种不寻常酶的催化功能的假设进行了讨论。