Murphy Ryan A, Darago Lucy E, Ziebel Michael E, Peterson Elizabeth A, Zaia Edmond W, Mara Michael W, Lussier Daniel, Velasquez Ever O, Shuh David K, Urban Jeffrey J, Neaton Jeffrey B, Long Jeffrey R
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Physics, University of California, Berkeley, California 94720, United States.
ACS Cent Sci. 2021 Aug 25;7(8):1317-1326. doi: 10.1021/acscentsci.1c00568. Epub 2021 Jul 20.
The discovery of conductive and magnetic two-dimensional (2D) materials is critical for the development of next generation spintronics devices. Coordination chemistry in particular represents a highly versatile, though underutilized, route toward the synthesis of such materials with designer lattices. Here, we report the synthesis of a conductive, layered 2D metal-organic kagome lattice, Mn(CS), using mild solution-phase chemistry. Strong geometric spin frustration in this system mediates spin freezing at low temperatures, which results in glassy magnetic dynamics consistent with a rare geometrically frustrated (topological) spin glass. Notably, we show that this geometric frustration engenders a large, tunable exchange bias of 1625 Oe in Mn(CS), providing the first example of exchange bias in a coordination solid or a topological spin glass. Exchange bias is a critical component in a number of spintronics applications, but it is difficult to rationally tune, as it typically arises due to structural disorder. This work outlines a new strategy for engineering exchange bias systems using single-phase, crystalline lattices. More generally, these results demonstrate the potential utility of geometric frustration in the design of new nanoscale spintronic materials.
导电和磁性二维(2D)材料的发现对于下一代自旋电子器件的发展至关重要。配位化学尤其代表了一种合成具有定制晶格的此类材料的高度通用但未充分利用的途径。在此,我们报道了使用温和的溶液相化学合成一种导电的层状二维金属有机 kagome 晶格 Mn(CS)。该体系中强烈的几何自旋阻挫在低温下介导自旋冻结,这导致了与罕见的几何阻挫(拓扑)自旋玻璃一致的玻璃态磁动力学。值得注意的是,我们表明这种几何阻挫在 Mn(CS)中产生了高达 1625 Oe 的大的、可调节的交换偏置,这是配位固体或拓扑自旋玻璃中交换偏置的首个例子。交换偏置是许多自旋电子学应用中的关键组成部分,但由于它通常因结构无序而产生,所以难以合理调节。这项工作概述了一种使用单相晶体晶格设计交换偏置系统的新策略。更普遍地说,这些结果证明了几何阻挫在新型纳米级自旋电子材料设计中的潜在效用。