Laboratory of Basic Biology, Hunan First Normal University, Changsha, China.
Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
Autophagy. 2022 Jun;18(6):1338-1349. doi: 10.1080/15548627.2021.1974178. Epub 2021 Oct 6.
Macroautophagy/autophagy, a highly conserved lysosome-dependent degradation pathway, has been intensively studied in regulating cell metabolism by degradation of intracellular components. In this study, we link autophagy to RNA metabolism by uncovering a regulatory role of autophagy in ribosomal RNA (rRNA) synthesis. Autophagy-deficient cells exhibit much higher precursor rRNA level, which is caused by the accumulation of SQSTM1/p62 (sequestosome 1) but not other autophagy receptors. Mechanistically, SQSTM1 accumulation potentiates the activation of MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) signaling and promotes the assembly of RNA polymerase I pre-initiation complex at ribosomal DNA (rDNA) promoters, which leads to an increase of rRNA transcribed from rDNA. Functionally, autophagy deficiency promotes protein synthesis, cell growth and cell proliferation, both of which are dependent on SQSTM1 accumulation. Taken together, our findings suggest that autophagy deficiency is involved in RNA metabolism by activating rDNA transcription and provide novel mechanisms for the reprogramming of cell metabolism in autophagy-related diseases including multiple types of cancers. 5-FUrd: 5-fluorouridine; AMPK: AMP-activated protein kinase; ATG: autophagy related; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; ChIP: chromatin immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK/ERK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PIC: pre-initiation complex; POLR1: RNA polymerase I; POLR1A/RPA194: RNA polymerase I subunit A; POLR2A: RNA polymerase II subunit A; rDNA: ribosomal DNA; RPS6KB1/S6K1: ribosomal protein S6 kinase B1; rRNA: ribosomal RNA; RUBCN/Rubicon: rubicon autophagy regulator; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; SUnSET: surface sensing of translation; TAX1BP1: Tax1 binding protein 1; UBTF/UBF1: upstream binding transcription factor; WIPI2: WD repeat domain, phosphoinositide interacting 2; WT: wild-type.
自噬/自噬是一种高度保守的溶酶体依赖性降解途径,通过降解细胞内成分来调节细胞代谢,它已被深入研究。在这项研究中,我们通过揭示自噬在核糖体 RNA(rRNA)合成中的调节作用,将自噬与 RNA 代谢联系起来。自噬缺陷细胞表现出更高的前体 rRNA 水平,这是由于 SQSTM1/p62(自噬体 1)的积累而不是其他自噬受体的积累造成的。在机制上,SQSTM1 的积累增强了 MTOR(雷帕霉素靶蛋白激酶)复合物 1(MTORC1)信号的激活,并促进 RNA 聚合酶 I 起始复合物在核糖体 DNA(rDNA)启动子上的组装,从而导致 rDNA 转录的 rRNA 增加。功能上,自噬缺陷促进蛋白质合成、细胞生长和细胞增殖,这两者都依赖于 SQSTM1 的积累。总之,我们的发现表明,自噬缺陷通过激活 rDNA 转录参与 RNA 代谢,并为自噬相关疾病(包括多种类型的癌症)中细胞代谢的重编程提供了新的机制。5-FUrd:5-氟尿嘧啶;AMPK:AMP 激活的蛋白激酶;ATG:自噬相关;CALCOCO2/NDP52:钙结合和卷曲螺旋域 2;ChIP:染色质免疫沉淀;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MAPK/ERK:丝裂原激活蛋白激酶;MTOR:雷帕霉素靶蛋白激酶;NBR1:NBR1 自噬货物受体;NFKB/NF-κB:核因子 kappa B;NFE2L2/NRF2:核因子,红细胞 2 样 2;OPTN:optineurin;PIC:起始前复合物;POLR1:RNA 聚合酶 I;POLR1A/RPA194:RNA 聚合酶 I 亚基 A;POLR2A:RNA 聚合酶 II 亚基 A;rDNA:核糖体 DNA;RPS6KB1/S6K1:核糖体蛋白 S6 激酶 B1;rRNA:核糖体 RNA;RUBCN/Rubicon:rubicon 自噬调节剂;SQSTM1/p62:自噬体 1;STX17:突触 17;SUnSET:翻译表面感应;TAX1BP1:Tax1 结合蛋白 1;UBTF/UBF1:上游结合转录因子;WIPI2:WD 重复结构域,磷酸肌醇相互作用 2;WT:野生型。