Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
J Mater Chem B. 2021 Sep 14;9(34):6818-6824. doi: 10.1039/d1tb01465j. Epub 2021 Aug 17.
This work reports a photoelectrochemical (PEC) biosensing platform for the sensitive and specific screening of thrombin by using graphene oxide-coated copper-doped zinc oxide quantum dots (CuZnO-GO QDs) as the photoactive materials and glucose oxidase-encapsulated DNA nanoflowers (GOx-DFs) for signal amplification. Interestingly, the coated graphene oxide nanosheets on the surface of the CuZnO QDs could cause the charge to transfer rapidly and ameliorate the photocorrosion. The doped copper into the quantum dots could enhance the absorption of visible light by tuning the band gap of ZnO QDs, therefore increasing the photocurrent under visible irradiation. Upon addition of target thrombin, a sandwiched reaction was carried out between thrombin aptamer and GOx-DFs, accompanying the formation of nanocomposites with the magnetic microparticles (MMPs)/thrombin/GOx-DFs. Followed by magnetic separation, the carried GOx oxidized glucose to HO, thus resulting in the increasing photocurrent of the CuZnO-GO QD-modified electrode. Under optimum conditions, the developed PEC biosensing platform exhibited good analytical performance with a linear range of 50-10 000 fM thrombin and a limit of detection of 29 fM. Impressively, our strategy offers a new horizon in developing bridge-connected graphene-coated nanomaterials and novel signal amplification strategy for the development of PEC biosensors.
本工作报道了一种光电化学(PEC)生物传感平台,通过使用氧化石墨烯包覆的铜掺杂氧化锌量子点(CuZnO-GO QDs)作为光活性材料和葡萄糖氧化酶封装的 DNA 纳米花(GOx-DFs)进行信号放大,用于灵敏和特异性地筛选凝血酶。有趣的是,表面包覆的氧化石墨烯纳米片可以使 CuZnO QDs 中的电荷快速转移,并改善光腐蚀。将铜掺杂到量子点中可以通过调整 ZnO QDs 的能带隙来增强可见光的吸收,从而在可见光照射下增加光电流。加入靶标凝血酶后,在凝血酶适配体和 GOx-DFs 之间进行三明治反应,伴随形成带有磁性微粒子(MMPs)/凝血酶/GOx-DFs 的纳米复合材料。随后通过磁分离,携带的 GOx 将葡萄糖氧化为 HO,从而导致 CuZnO-GO QD 修饰电极的光电流增加。在最佳条件下,所开发的 PEC 生物传感平台表现出良好的分析性能,线性范围为 50-10000 fM 凝血酶,检测限为 29 fM。令人印象深刻的是,我们的策略为开发桥接石墨烯包覆纳米材料和新型信号放大策略提供了新的思路,用于开发 PEC 生物传感器。