Dolgitzer David, Zeng Debing, Chen Yusui
Opt Express. 2021 Jul 19;29(15):23988-23996. doi: 10.1364/OE.434183.
We study dynamical quantum phase transitions in a 2-qubit system interacting with a transverse field and a quantized bosonic environment in the context of open quantum systems. By applying the stochastic Schrödinger equation approach, the model with a spin-boson type of coupling can be solved numerically. It is observed that the dynamics of the rate function of the Loschmidt echo in a 2-qubit system within a finite size of Hilbert space exhibit nonanalyticity when the direction of the transverse field coupled to the system is under a sudden quench. Moreover, we demonstrate that the memory time of the environment and the coupling strength between the system and the transverse field can jointly impact the dynamics of the rate function. We also supply a semi-classical explanation to bridge the dynamical quantum phase transitions in many-body systems and the non-Markovian dynamics of open quantum systems.
我们在开放量子系统的背景下,研究了一个与横向场和量子化玻色子环境相互作用的两比特系统中的动态量子相变。通过应用随机薛定谔方程方法,可以对具有自旋 - 玻色子类型耦合的模型进行数值求解。我们观察到,在有限大小的希尔伯特空间内,当耦合到系统的横向场方向发生突然猝灭时,两比特系统中洛施密特回波速率函数的动力学表现出非解析性。此外,我们证明了环境的记忆时间以及系统与横向场之间的耦合强度可以共同影响速率函数的动力学。我们还提供了一种半经典解释,以弥合多体系统中的动态量子相变与开放量子系统的非马尔可夫动力学之间的差距。