Fernández-Martínez Javier, Carretero-Palacios Sol, Sánchez-García Laura, Bravo-Abad Jorge, Molina Pablo, van Hoof Niels, Ramírez Mariola O, Rivas Jaime Gómez, Bausá Luisa E
Opt Express. 2021 Aug 2;29(16):26244-26254. doi: 10.1364/OE.433080.
Controlling the coherence properties of rare earth emitters in solid-state platforms in the absence of an optical cavity is highly desirable for quantum light-matter interfaces and photonic networks. Here, we demonstrate the possibility of generating directional and spatially coherent light from Nd ions coupled to the longitudinal plasmonic mode of a chain of interacting Ag nanoparticles. The effect of the plasmonic chain on the Nd emission is analyzed by Fourier microscopy. The results reveal the presence of an interference pattern in which the Nd emission is enhanced at specific directions, as a distinctive signature of spatial coherence. Numerical simulations corroborate the need of near-field coherent coupling of the emitting ions with the plasmonic chain mode. The work provides fundamental insights for controlling the coherence properties of quantum emitters at room temperature and opens new avenues towards rare earth based nanoscale hybrid devices for quantum information or optical communication in nanocircuits.
在没有光学腔的情况下控制固态平台中稀土发光体的相干特性,对于量子光物质界面和光子网络来说是非常可取的。在这里,我们展示了从与相互作用的银纳米颗粒链的纵向等离子体模式耦合的钕离子产生定向和空间相干光的可能性。通过傅里叶显微镜分析了等离子体链对钕发射的影响。结果揭示了存在一种干涉图案,其中钕发射在特定方向上增强,这是空间相干的独特特征。数值模拟证实了发射离子与等离子体链模式进行近场相干耦合的必要性。这项工作为在室温下控制量子发光体的相干特性提供了基本见解,并为基于稀土的纳米级混合器件开辟了新途径,用于纳米电路中的量子信息或光通信。