Fernández-Martínez Javier, Carretero-Palacios Sol, Molina Pablo, Bravo-Abad Jorge, Ramírez Mariola O, Bausá Luisa E
Departamento de Física de Materiales and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Nanomaterials (Basel). 2022 Dec 3;12(23):4296. doi: 10.3390/nano12234296.
Plasmonic waveguides have been shown to be a promising approach to confine and transport electromagnetic energy beyond the diffraction limit. However, ohmic losses generally prevent their integration at micrometric or millimetric scales. Here, we present a gain-compensated plasmonic waveguide based on the integration of linear chains of Ag nanoparticles on an optically active Nd-doped solid-state gain medium. By means of dual confocal fluorescence microscopy, we demonstrate long-range optical energy propagation due to the near-field coupling between the plasmonic nanostructures and the Nd ions. The subwavelength fluorescence guiding is monitored at distances of around 100 µm from the excitation source for two different emission ranges centered at around 900 nm and 1080 nm. In both cases, the guided fluorescence exhibits a strong polarization dependence, consistent with the polarization behavior of the plasmon resonance supported by the chain. The experimental results are interpreted through numerical simulations in quasi-infinite long chains, which corroborate the propagation features of the Ag nanoparticle chains at both excitation (λ = 590 nm) and emission wavelengths. The obtained results exceed by an order of magnitude that of previous reports on electromagnetic energy transport using linear plasmonic chains. The work points out the potential of combining Ag nanoparticle chains with a small interparticle distance (~2 nm) with rare-earth-based optical gain media as ultra-long-range waveguides with extreme light confinement. The results offer new perspectives for the design of integrated hybrid plasmonic-photonic circuits based on rare-earth-activated solid-state platforms.
表面等离子体波导已被证明是一种很有前景的方法,可用于在衍射极限之外限制和传输电磁能量。然而,欧姆损耗通常会阻碍它们在微米或毫米尺度上的集成。在此,我们展示了一种基于将银纳米颗粒线性链集成在光学活性掺钕固态增益介质上的增益补偿表面等离子体波导。通过双共焦荧光显微镜,我们证明了由于等离子体纳米结构与钕离子之间的近场耦合而实现的长距离光能传播。在距离激发源约100 µm处,针对以900 nm和1080 nm左右为中心的两个不同发射范围监测亚波长荧光引导。在这两种情况下,引导荧光都表现出强烈的偏振依赖性,这与链所支持的等离子体共振的偏振行为一致。通过对准无限长链的数值模拟来解释实验结果,这证实了银纳米颗粒链在激发(λ = 590 nm)和发射波长下的传播特性。所获得的结果比之前关于使用线性表面等离子体链进行电磁能量传输的报告结果高出一个数量级。这项工作指出了将颗粒间距小(约2 nm)的银纳米颗粒链与基于稀土的光学增益介质相结合作为具有极强光限制的超长距离波导的潜力。这些结果为基于稀土激活固态平台的集成混合表面等离子体 - 光子电路的设计提供了新的视角。