Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123, Saarbrücken, Germany.
German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig (Germany).
Chemistry. 2021 Dec 1;27(67):16654-16661. doi: 10.1002/chem.202103095. Epub 2021 Nov 5.
A metabolome-guided screening approach in the novel myxobacterium Corallococcus sp. MCy9072 resulted in the isolation of the unprecedented natural product myxofacycline A, which features a rare isoxazole substructure. Identification and genomic investigation of additional producers alongside targeted gene inactivation experiments and heterologous expression of the corresponding biosynthetic gene cluster in the host Myxococcus xanthus DK1622 confirmed a noncanonical megaenzyme complex as the biosynthetic origin of myxofacycline A. Induced expression of the respective genes led to significantly increased production titers enabling the identification of six further members of the myxofacycline natural product family. Whereas myxofacyclines A-D display an isoxazole substructure, intriguingly myxofacyclines E and F were found to contain 4-pyrimidinole, a heterocycle unprecedented in natural products. Lastly, myxofacycline G features another rare 1,2-dihydropyrol-3-one moiety. In addition to a full structure elucidation, we report the underlying biosynthetic machinery and present a rationale for the formation of all myxofacyclines. Unexpectedly, an extraordinary polyketide synthase-nonribosomal peptide synthetase hybrid was found to produce all three types of heterocycle in these natural products.
在新型粘球菌 Corallococcus sp. MCy9072 中进行的代谢组学指导筛选方法导致分离出了前所未有的天然产物粘霉素 A,其具有罕见的异噁唑亚结构。通过对其他产生菌的鉴定和基因组研究,以及在宿主粘球菌 DK1622 中的靶向基因失活实验和相应生物合成基因簇的异源表达,证实了一个非典型的巨型酶复合物是粘霉素 A 的生物合成起源。相应基因的诱导表达导致产量显著增加,从而能够鉴定出粘霉素天然产物家族的另外六个成员。虽然粘霉素 A-D 显示出异噁唑亚结构,但令人好奇的是,粘霉素 E 和 F 被发现含有 4-嘧啶醇,这是天然产物中前所未有的杂环。最后,粘霉素 G 具有另一个罕见的 1,2-二氢吡咯-3-酮部分。除了全面的结构阐明外,我们还报告了潜在的生物合成机制,并提出了形成所有粘霉素的原理。出乎意料的是,一种特殊的聚酮合酶-非核糖体肽合成酶杂合体被发现能够在这些天然产物中产生所有三种类型的杂环。