Suppr超能文献

整合分子形态学脑膜瘤分类:多中心回顾性和前瞻性验证研究。

Integrated Molecular-Morphologic Meningioma Classification: A Multicenter Retrospective Analysis, Retrospectively and Prospectively Validated.

机构信息

Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.

出版信息

J Clin Oncol. 2021 Dec 1;39(34):3839-3852. doi: 10.1200/JCO.21.00784. Epub 2021 Oct 7.

Abstract

PURPOSE

Meningiomas are the most frequent primary intracranial tumors. Patient outcome varies widely from benign to highly aggressive, ultimately fatal courses. Reliable identification of risk of progression for individual patients is of pivotal importance. However, only biomarkers for highly aggressive tumors are established ( and ), whereas no molecularly based stratification exists for the broad spectrum of patients with low- and intermediate-risk meningioma.

METHODS

DNA methylation data and copy-number information were generated for 3,031 meningiomas (2,868 patients), and mutation data for 858 samples. DNA methylation subgroups, copy-number variations (CNVs), mutations, and WHO grading were analyzed. Prediction power for outcome was assessed in a retrospective cohort of 514 patients, validated on a retrospective cohort of 184, and on a prospective cohort of 287 multicenter cases.

RESULTS

Both CNV- and methylation family-based subgrouping independently resulted in increased prediction accuracy of risk of recurrence compared with the WHO classification (c-indexes WHO 2016, CNV, and methylation family 0.699, 0.706, and 0.721, respectively). Merging all risk stratification approaches into an integrated molecular-morphologic score resulted in further substantial increase in accuracy (c-index 0.744). This integrated score consistently provided superior accuracy in all three cohorts, significantly outperforming WHO grading (c-index difference = .005). Besides the overall stratification advantage, the integrated score separates more precisely for risk of progression at the diagnostically challenging interface of WHO grade 1 and grade 2 tumors (hazard ratio 4.34 [2.48-7.57] and 3.34 [1.28-8.72] retrospective and prospective validation cohorts, respectively).

CONCLUSION

Merging these layers of histologic and molecular data into an integrated, three-tiered score significantly improves the precision in meningioma stratification. Implementation into diagnostic routine informs clinical decision making for patients with meningioma on the basis of robust outcome prediction.

摘要

目的

脑膜瘤是最常见的原发性颅内肿瘤。患者的预后从良性到高度侵袭性,最终致命的情况各不相同。可靠地识别个体患者的进展风险至关重要。然而,目前仅确立了高度侵袭性肿瘤的生物标志物( 和 ),而对于低风险和中风险脑膜瘤的广泛患者,尚无基于分子的分层。

方法

对 3031 例脑膜瘤(2868 例患者)进行了 DNA 甲基化数据和拷贝数信息生成,对 858 例样本进行了突变数据生成。分析了 DNA 甲基化亚组、拷贝数变异(CNV)、突变和世界卫生组织(WHO)分级。在 514 例回顾性队列中评估了预后的预测能力,并在 184 例回顾性队列和 287 例多中心前瞻性队列中进行了验证。

结果

基于 CNV 和甲基化家族的亚组分类均独立提高了与 WHO 分类相比的复发风险预测准确性(2016 年 WHO 分类的 C 指数、CNV 和甲基化家族分别为 0.699、0.706 和 0.721)。将所有风险分层方法合并为一个综合的分子-形态学评分可进一步显著提高准确性(C 指数 0.744)。该综合评分在所有三个队列中均提供了更高的准确性,显著优于 WHO 分级(C 指数差异 = 0.005)。除了整体分层优势外,该综合评分还更精确地分离了 WHO 1 级和 2 级肿瘤诊断挑战性界面的进展风险(回顾性和前瞻性验证队列的危险比分别为 4.34[2.48-7.57]和 3.34[1.28-8.72])。

结论

将这些组织学和分子数据层合并为一个综合的三级评分显著提高了脑膜瘤分层的准确性。将其纳入诊断常规可根据可靠的预后预测为脑膜瘤患者提供临床决策依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32f4/8713596/0ffc2dfaf333/jco-39-3839-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验