Suppr超能文献

多模态 MRI 的非参数组合用于局灶性癫痫的病灶检测。

Non-parametric combination of multimodal MRI for lesion detection in focal epilepsy.

机构信息

School of Computing, Queen's University, Kingston, Canada.

Centre for Medical Image Computing, University College London, London, UK; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; MRI Unit, Epilepsy Society, Chalfont St Peter, UK; National Institute for Health Research Biomedical Research Centre at University College London and University College London NHS Foundation Trust, London, UK; Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK.

出版信息

Neuroimage Clin. 2021;32:102837. doi: 10.1016/j.nicl.2021.102837. Epub 2021 Sep 25.

Abstract

One third of patients with medically refractory focal epilepsy have normal-appearing MRI scans. This poses a problem as identification of the epileptogenic region is required for surgical treatment. This study performs a multimodal voxel-based analysis (VBA) to identify brain abnormalities in MRI-negative focal epilepsy. Data was collected from 69 focal epilepsy patients (42 with discrete lesions on MRI scans, 27 with no visible findings on scans), and 62 healthy controls. MR images comprised T1-weighted, fluid-attenuated inversion recovery (FLAIR), fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging, and neurite density index (NDI) from neurite orientation dispersion and density imaging. These multimodal images were coregistered to T1-weighted scans, normalized to a standard space, and smoothed with 8 mm FWHM. Initial analysis performed voxel-wise one-tailed t-tests separately on grey matter concentration (GMC), FLAIR, FA, MD, and NDI, comparing patients with epilepsy to controls. A multimodal non-parametric combination (NPC) analysis was also performed simultaneously on FLAIR, FA, MD, and NDI. Resulting p-maps were family-wise error rate corrected, threshold-free cluster enhanced, and thresholded at p < 0.05. Sensitivity was established through visual comparison of results to manually drawn lesion masks or seizure onset zone (SOZ) from stereoelectroencephalography. A leave-one-out cross-validation with the same analysis protocols was performed on controls to determine specificity. NDI was the best performing individual modality, detecting focal abnormalities in 38% of patients with normal MRI and conclusive SOZ. GMC demonstrated the lowest sensitivity at 19%. NPC provided superior performance to univariate analyses with 50% sensitivity. Specificity in controls ranged between 96 and 100% for all analyses. This study demonstrated the utility of a multimodal VBA utilizing NPC for detecting epileptogenic lesions in MRI-negative focal epilepsy. Future work will apply this approach to datasets from other centres and will experiment with different combinations of MR sequences.

摘要

三分之一的药物难治性局灶性癫痫患者的 MRI 扫描结果正常。这给手术治疗带来了问题,因为需要确定致痫区。本研究通过多模态体素基分析(VBA)来识别 MRI 阴性局灶性癫痫的脑异常。数据来自 69 例局灶性癫痫患者(42 例 MRI 扫描有离散病变,27 例扫描无明显发现)和 62 例健康对照者。MR 图像包括 T1 加权像、液体衰减反转恢复(FLAIR)、各向异性分数(FA)和来自弥散张量成像的平均弥散度(MD),以及来自神经丝取向弥散和密度成像的神经丝密度指数(NDI)。这些多模态图像与 T1 加权像配准,标准化到标准空间,并用 8mm FWHM 平滑。最初的分析对灰质浓度(GMC)、FLAIR、FA、MD 和 NDI 分别进行了患者与对照组的单尾 t 检验。还同时对 FLAIR、FA、MD 和 NDI 进行了多模态非参数组合(NPC)分析。校正后的 p 值图通过与手动绘制的病变掩模或立体脑电图的致痫区(SOZ)进行视觉比较进行阈值自由聚类增强,并在 p<0.05 时进行阈值处理。通过与手动绘制的病变掩模或立体脑电图的致痫区(SOZ)进行视觉比较进行了敏感性验证。对对照组进行了相同分析方案的留一法交叉验证以确定特异性。NDI 是表现最好的单一模态,在 38%的 MRI 正常患者中检测到局灶性异常和明确的 SOZ。GMC 的敏感性最低,为 19%。NPC 与单变量分析相比,敏感性为 50%。所有分析的对照组特异性在 96%到 100%之间。本研究证明了使用 NPC 的多模态 VBA 检测 MRI 阴性局灶性癫痫致痫病变的有效性。未来的工作将把这种方法应用于其他中心的数据集,并尝试不同的 MR 序列组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd0/8503566/001f5a8aead1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验