Suppr超能文献

利用多模态磁共振成像数据的计算分析检测局灶性癫痫中的隐匿性病变。

Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data.

机构信息

Centre for Medical Image Computing, University College London, London, UK.

Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.

出版信息

Epilepsia. 2021 Mar;62(3):807-816. doi: 10.1111/epi.16836. Epub 2021 Feb 10.

Abstract

OBJECTIVE

To compare the location of suspect lesions detected by computational analysis of multimodal magnetic resonance imaging data with areas of seizure onset, early propagation, and interictal epileptiform discharges (IEDs) identified with stereoelectroencephalography (SEEG) in a cohort of patients with medically refractory focal epilepsy and radiologically normal magnetic resonance imaging (MRI) scans.

METHODS

We developed a method of lesion detection using computational analysis of multimodal MRI data in a cohort of 62 control subjects, and 42 patients with focal epilepsy and MRI-visible lesions. We then applied it to detect covert lesions in 27 focal epilepsy patients with radiologically normal MRI scans, comparing our findings with the areas of seizure onset, early propagation, and IEDs identified at SEEG.

RESULTS

Seizure-onset zones (SoZs) were identified at SEEG in 18 of the 27 patients (67%) with radiologically normal MRI scans. In 11 of these 18 cases (61%), concordant abnormalities were detected by our method. In the remaining seven cases, either early seizure propagation or IEDs were observed within the abnormalities detected, or there were additional areas of imaging abnormalities found by our method that were not sampled at SEEG. In one of the nine patients (11%) in whom SEEG was inconclusive, an abnormality, which may have been involved in seizures, was identified by our method and was not sampled at SEEG.

SIGNIFICANCE

Computational analysis of multimodal MRI data revealed covert abnormalities in the majority of patients with refractory focal epilepsy and radiologically normal MRI that co-located with SEEG defined zones of seizure onset. The method could help identify areas that should be targeted with SEEG when considering epilepsy surgery.

摘要

目的

比较计算分析多模态磁共振成像数据得出的可疑病变位置与立体脑电图(SEEG)定位的药物难治性局灶性癫痫伴磁共振成像正常(MRI)患者的发作起始区、早期传播区和发作间期癫痫样放电(IEDs)的位置。

方法

我们在 62 名对照者和 42 名局灶性癫痫伴 MRI 可见病变的患者队列中开发了一种基于多模态 MRI 数据的计算分析病变检测方法。然后,我们将其应用于 27 例 MRI 正常的局灶性癫痫患者中以检测隐匿性病变,并将我们的发现与 SEEG 确定的发作起始区、早期传播区和 IEDs 进行比较。

结果

在 27 例 MRI 正常的患者中,有 18 例(67%)在 SEEG 中确定了发作起始区(SoZs)。在这 18 例中的 11 例(61%)中,我们的方法检测到了一致的异常。在其余 7 例中,要么在检测到的异常中观察到早期癫痫传播或 IEDs,要么在我们的方法中发现了额外的影像学异常区域,但这些区域未在 SEEG 中取样。在 9 例(11%)SEEG 结果不确定的患者中,我们的方法检测到一个可能与癫痫发作相关的异常,但未在 SEEG 中取样。

意义

多模态 MRI 数据的计算分析揭示了大多数药物难治性局灶性癫痫伴 MRI 正常患者存在隐匿性异常,这些异常与 SEEG 定义的发作起始区重合。该方法有助于在考虑癫痫手术时确定需要进行 SEEG 取样的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb3b/8436754/a7a5cbf854b5/EPI-62-807-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验