Suppr超能文献

基于数字图像减影技术的脑肿瘤间隔变化的实时监测

Brain Tumour Temporal Monitoring of Interval Change Using Digital Image Subtraction Technique.

机构信息

Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia.

Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Malaysia.

出版信息

Front Public Health. 2021 Sep 21;9:752509. doi: 10.3389/fpubh.2021.752509. eCollection 2021.

Abstract

A process that involves the registration of two brain Magnetic Resonance Imaging (MRI) acquisitions is proposed for the subtraction between previous and current images at two different follow-up (FU) time points. Brain tumours can be non-cancerous (benign) or cancerous (malignant). Treatment choices for these conditions rely on the type of brain tumour as well as its size and location. Brain cancer is a fast-spreading tumour that must be treated in time. MRI is commonly used in the detection of early signs of abnormality in the brain area because it provides clear details. Abnormalities include the presence of cysts, haematomas or tumour cells. A sequence of images can be used to detect the progression of such abnormalities. A previous study on conventional (CONV) visual reading reported low accuracy and speed in the early detection of abnormalities, specifically in brain images. It can affect the proper diagnosis and treatment of the patient. A digital subtraction technique that involves two images acquired at two interval time points and their subtraction for the detection of the progression of abnormalities in the brain image was proposed in this study. MRI datasets of five patients, including a series of brain images, were retrieved retrospectively in this study. All methods were carried out using the MATLAB programming platform. ROI volume and diameter for both regions were recorded to analyse progression details, location, shape variations and size alteration of tumours. This study promotes the use of digital subtraction techniques on brain MRIs to track any abnormality and achieve early diagnosis and accuracy whilst reducing reading time. Thus, improving the diagnostic information for physicians can enhance the treatment plan for patients.

摘要

提出了一种涉及两次脑部磁共振成像 (MRI) 采集注册的过程,以便在两个不同随访 (FU) 时间点的前后图像之间进行减法。脑肿瘤可以是非癌性的(良性)或癌性的(恶性)。这些情况的治疗选择取决于脑肿瘤的类型及其大小和位置。脑癌是一种快速扩散的肿瘤,必须及时治疗。MRI 常用于检测脑区早期异常,因为它提供了清晰的细节。异常包括囊肿、血肿或肿瘤细胞的存在。可以使用一系列图像来检测这些异常的进展。之前关于传统(CONV)视觉阅读的研究报告称,在早期检测异常方面,特别是在脑图像中,准确性和速度都较低。这可能会影响患者的正确诊断和治疗。本研究提出了一种数字减影技术,该技术涉及在两个间隔时间点采集的两幅图像及其减影,用于检测脑图像中异常的进展。在这项研究中,回顾性地检索了五名患者的 MRI 数据集,包括一系列脑图像。所有方法均在 MATLAB 编程平台上进行。记录了两个区域的 ROI 体积和直径,以分析肿瘤的进展细节、位置、形状变化和大小改变。这项研究促进了数字减影技术在脑 MRI 上的应用,以跟踪任何异常,实现早期诊断和准确性,同时减少阅读时间。因此,提高医生的诊断信息可以为患者的治疗计划提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c3/8490781/3f22324b2264/fpubh-09-752509-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验