Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164 CTA, A-1060, Vienna, Austria.
Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Krems, Austria.
Anal Bioanal Chem. 2021 Dec;413(30):7341-7352. doi: 10.1007/s00216-021-03692-y. Epub 2021 Oct 7.
The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible. Platelet-derived extracellular vesicles (EVs)with/without additional size exclusion chromatographic (SEC) purification were subjected to nanoparticle tracking analysis (NTA) and gas-phase electrophoresis (nES GEMMA). The latter revealed presence of co-purified proteins, targetable via mass spectrometry (MS). MS also revealed that SEC did not influence EV protein content. To conclude, nES GEMMA is a valuable tool for quality control of EV-containing samples under native conditions allowing for detection of co-purified proteins from complex matrices.
作为生物标志物的细胞外囊泡 (EVs) 的新兴作用及其预期的治疗用途需要先进的技术来对其进行详细表征。在这种情况下,我们研究了纳米电喷雾气相电泳迁移率分子分析仪 (nES GEMMA,又名 nES 差分迁移率分析仪,nES DMA) 的气相电泳作为标准分析技术的替代方法。在气相电泳中,单电荷、表面干燥、天然、多分散和雾化的分析物,例如蛋白质或生物纳米颗粒,根据其电泳迁移率直径(即球状大小)进行分离。随后,在过饱和气氛中的成核步骤后,当它们通过聚焦激光束时,对单分散颗粒进行计数。因此,根据欧洲委员会对纳米颗粒表征的建议(2011 年 10 月 18 日的 2011/696/EU)获得颗粒数浓度。较小的样品成分(例如,共纯化的蛋白质)可以与较大的样品成分(例如囊泡)一起检测到。我们专注于血小板衍生的 EVs,比较了不同的囊泡分离技术。在所有情况下,纳米颗粒跟踪分析 (NTA) 都证实了囊泡的存在。然而,nES GEMMA 经常揭示出样品基质中存在大量共纯化的蛋白质,这使得包含更高囊泡浓度的未稀释样品的气相电泳成为不可能。因此,主要检测到蛋白质大小范围内的峰。质谱分析表明,这些主要污染物属于球蛋白和与凝血相关的成分组。另外的尺寸排阻色谱 (SEC) 步骤能够耗尽共纯化的蛋白质基质成分,而无标记定量蛋白质组学方法显示检测到的 EV 核心蛋白质组没有明显差异。因此,通过气相电泳对 EV 进行深入分析的未来似乎是可行的。未经或经额外的尺寸排阻色谱 (SEC) 纯化的血小板衍生细胞外囊泡 (EVs) 进行了纳米颗粒跟踪分析 (NTA) 和气相电泳 (nES GEMMA)。后者揭示了存在共纯化的蛋白质,可通过质谱 (MS) 靶向。MS 还表明 SEC 不影响 EV 蛋白质含量。总之,nES GEMMA 是一种在天然条件下对含有 EV 的样品进行质量控制的有价值的工具,允许检测来自复杂基质的共纯化蛋白质。