Suppr超能文献

基于根尖片的卷积神经网络算法在牙齿检测和编号中的性能。

Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs.

机构信息

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Bursa Uludağ University, Bursa, Turkey.

Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey.

出版信息

Dentomaxillofac Radiol. 2022 Mar 1;51(3):20210246. doi: 10.1259/dmfr.20210246. Epub 2021 Oct 8.

Abstract

OBJECTIVES

The present study aimed to evaluate the performance of a Faster Region-based Convolutional Neural Network (R-CNN) algorithm for tooth detection and numbering on periapical images.

METHODS

The data sets of 1686 randomly selected periapical radiographs of patients were collected retrospectively. A pre-trained model (GoogLeNet Inception v3 CNN) was employed for pre-processing, and transfer learning techniques were applied for data set training. The algorithm consisted of: (1) the Jaw classification model, (2) Region detection models, and (3) the Final algorithm using all models. Finally, an analysis of the latest model has been integrated alongside the others. The sensitivity, precision, true-positive rate, and false-positive/negative rate were computed to analyze the performance of the algorithm using a confusion matrix.

RESULTS

An artificial intelligence algorithm (CranioCatch, Eskisehir-Turkey) was designed based on R-CNN inception architecture to automatically detect and number the teeth on periapical images. Of 864 teeth in 156 periapical radiographs, 668 were correctly numbered in the test data set. The F1 score, precision, and sensitivity were 0.8720, 0.7812, and 0.9867, respectively.

CONCLUSION

The study demonstrated the potential accuracy and efficiency of the CNN algorithm for detecting and numbering teeth. The deep learning-based methods can help clinicians reduce workloads, improve dental records, and reduce turnaround time for urgent cases. This architecture might also contribute to forensic science.

摘要

目的

本研究旨在评估基于快速区域卷积神经网络(R-CNN)算法在根尖片上进行牙齿检测和编号的性能。

方法

本研究回顾性地收集了 1686 张随机选择的根尖片数据。使用预训练模型(GoogLeNet Inception v3 CNN)进行预处理,并应用迁移学习技术对数据集进行训练。该算法包括:(1)颌骨分类模型;(2)区域检测模型;(3)使用所有模型的最终算法。最后,将最新模型的分析与其他模型进行了整合。使用混淆矩阵计算算法的性能,分析灵敏度、精度、真阳性率和假阳性/阴性率。

结果

基于 R-CNN inception 架构设计了一种人工智能算法(CranioCatch,土耳其埃斯基谢希尔),用于自动检测和编号根尖片上的牙齿。在 156 张根尖片中的 864 颗牙齿中,在测试数据集中有 668 颗牙齿被正确编号。F1 评分、精度和灵敏度分别为 0.8720、0.7812 和 0.9867。

结论

该研究表明了 CNN 算法在检测和编号牙齿方面具有潜在的准确性和效率。基于深度学习的方法可以帮助临床医生减轻工作量,改善牙科记录,并缩短紧急情况下的周转时间。这种架构也可能有助于法医学。

相似文献

8
A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs.基于 U-Net 的全景片根尖病变分割方法。
Biomed Res Int. 2022 Jan 15;2022:7035367. doi: 10.1155/2022/7035367. eCollection 2022.

引用本文的文献

本文引用的文献

4
Artificial Intelligence in Dentistry: Chances and Challenges.人工智能在牙科领域的应用:机遇与挑战。
J Dent Res. 2020 Jul;99(7):769-774. doi: 10.1177/0022034520915714. Epub 2020 Apr 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验