文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLO-V5 的深度学习方法在混合牙列的小儿全景片中进行牙齿检测和分割。

YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition.

机构信息

Department of Orthodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey.

Pedodontics, Private Practice, Trabzon, Turkey.

出版信息

BMC Med Imaging. 2024 Jul 11;24(1):172. doi: 10.1186/s12880-024-01338-w.


DOI:10.1186/s12880-024-01338-w
PMID:38992601
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11238494/
Abstract

OBJECTIVES: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and numbering of deciduous and permanent teeth in mixed dentition pediatric patients based on PRs. METHODS: A total of 3854 mixed pediatric patients PRs were labelled for deciduous and permanent teeth using the CranioCatch labeling program. The dataset was divided into three subsets: training (n = 3093, 80% of the total), validation (n = 387, 10% of the total) and test (n = 385, 10% of the total). An artificial intelligence (AI) algorithm using YOLO-v5 models were developed. RESULTS: The sensitivity, precision, F-1 score, and mean average precision-0.5 (mAP-0.5) values were 0.99, 0.99, 0.99, and 0.98 respectively, to teeth detection. The sensitivity, precision, F-1 score, and mAP-0.5 values were 0.98, 0.98, 0.98, and 0.98, respectively, to teeth segmentation. CONCLUSIONS: YOLO-v5 based models can have the potential to detect and enable the accurate segmentation of deciduous and permanent teeth using PRs of pediatric patients with mixed dentition.

摘要

目的:在全景放射影像(PR)解读中,牙齿的识别和编号是正确诊断的重要组成部分。本研究评估了 YOLO-v5 在基于 PR 对混合牙列儿童患者的乳牙和恒牙进行自动检测、分割和编号的有效性。

方法:使用 CranioCatch 标注程序对 3854 名混合儿科患者的 PR 进行了乳牙和恒牙的标注。数据集分为三个子集:训练集(n=3093,占总数的 80%)、验证集(n=387,占总数的 10%)和测试集(n=385,占总数的 10%)。开发了一种使用 YOLO-v5 模型的人工智能(AI)算法。

结果:牙齿检测的灵敏度、精度、F1 评分和平均精度-0.5(mAP-0.5)值分别为 0.99、0.99、0.99 和 0.98。牙齿分割的灵敏度、精度、F1 评分和 mAP-0.5 值分别为 0.98、0.98、0.98 和 0.98。

结论:基于 YOLO-v5 的模型有可能通过混合牙列儿童患者的 PR 检测并实现乳牙和恒牙的精确分割。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/a7f89d215264/12880_2024_1338_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/55d246fad8e2/12880_2024_1338_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/ff95984eafa5/12880_2024_1338_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/aa1e6e34ba7f/12880_2024_1338_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/61b6bae56982/12880_2024_1338_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/922023af1bd4/12880_2024_1338_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/a7f89d215264/12880_2024_1338_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/55d246fad8e2/12880_2024_1338_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/ff95984eafa5/12880_2024_1338_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/aa1e6e34ba7f/12880_2024_1338_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/61b6bae56982/12880_2024_1338_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/922023af1bd4/12880_2024_1338_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3800/11238494/a7f89d215264/12880_2024_1338_Fig6_HTML.jpg

相似文献

[1]
YOLO-V5 based deep learning approach for tooth detection and segmentation on pediatric panoramic radiographs in mixed dentition.

BMC Med Imaging. 2024-7-11

[2]
Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs.

Dentomaxillofac Radiol. 2021-9-1

[3]
Proposing a CNN Method for Primary and Permanent Tooth Detection and Enumeration on Pediatric Dental Radiographs.

J Clin Pediatr Dent. 2022-7-1

[4]
Automated permanent tooth detection and numbering on panoramic radiograph using a deep learning approach.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-5

[5]
A novel collaborative learning model for mixed dentition and fillings segmentation in panoramic radiographs.

J Dent. 2024-1

[6]
An artifıcial ıntelligence approach to automatic tooth detection and numbering in panoramic radiographs.

BMC Med Imaging. 2021-8-13

[7]
A Deep Learning Approach to Automatic Tooth Caries Segmentation in Panoramic Radiographs of Children in Primary Dentition, Mixed Dentition, and Permanent Dentition.

Children (Basel). 2024-6-5

[8]
A dual-labeled dataset and fusion model for automatic teeth segmentation, numbering, and state assessment on panoramic radiographs.

BMC Oral Health. 2024-10-9

[9]
Robust automated teeth identification from dental radiographs using deep learning.

J Dent. 2023-9

[10]
Deep learning for automated detection and numbering of permanent teeth on panoramic images.

Dentomaxillofac Radiol. 2022-2-1

引用本文的文献

[1]
Segmentation of airways and soft tissues on panoramic radiographs using artificial intelligence technology.

BMC Oral Health. 2025-6-2

[2]
Automatic mandibular third molar and mandibular canal relationship determination based on deep learning models for preoperative risk reduction.

Clin Oral Investig. 2025-3-25

[3]
Segmentation of the nasopalatine canal and detection of canal furcation status with artificial intelligence on cone-beam computed tomography images.

Oral Radiol. 2025-2-28

[4]
Evaluation of the Performance of a YOLOv10-Based Deep Learning Model for Tooth Detection and Numbering on Panoramic Radiographs of Patients in the Mixed Dentition Period.

Diagnostics (Basel). 2025-2-7

本文引用的文献

[1]
Deep learning for tooth identification and numbering on dental radiography: a systematic review and meta-analysis.

Dentomaxillofac Radiol. 2024-1-11

[2]
A novel collaborative learning model for mixed dentition and fillings segmentation in panoramic radiographs.

J Dent. 2024-1

[3]
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population.

BMC Oral Health. 2023-10-17

[4]
External root resorption and rapid maxillary expansion in the short-term: a CBCT comparative study between tooth-borne and bone-borne appliances, using 3D imaging digital technology.

BMC Oral Health. 2023-8-12

[5]
Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review.

Diagnostics (Basel). 2023-7-27

[6]
A fine-tuned YOLOv5 deep learning approach for real-time house number detection.

PeerJ Comput Sci. 2023-7-3

[7]
Robust automated teeth identification from dental radiographs using deep learning.

J Dent. 2023-9

[8]
Children's dental panoramic radiographs dataset for caries segmentation and dental disease detection.

Sci Data. 2023-6-14

[9]
Developing deep learning methods for classification of teeth in dental panoramic radiography.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7

[10]
Artificial Intelligence Its Uses and Application in Pediatric Dentistry: A Review.

Biomedicines. 2023-3-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索