Department of Orthodontics, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey.
Pedodontics, Private Practice, Trabzon, Turkey.
BMC Med Imaging. 2024 Jul 11;24(1):172. doi: 10.1186/s12880-024-01338-w.
OBJECTIVES: In the interpretation of panoramic radiographs (PRs), the identification and numbering of teeth is an important part of the correct diagnosis. This study evaluates the effectiveness of YOLO-v5 in the automatic detection, segmentation, and numbering of deciduous and permanent teeth in mixed dentition pediatric patients based on PRs. METHODS: A total of 3854 mixed pediatric patients PRs were labelled for deciduous and permanent teeth using the CranioCatch labeling program. The dataset was divided into three subsets: training (n = 3093, 80% of the total), validation (n = 387, 10% of the total) and test (n = 385, 10% of the total). An artificial intelligence (AI) algorithm using YOLO-v5 models were developed. RESULTS: The sensitivity, precision, F-1 score, and mean average precision-0.5 (mAP-0.5) values were 0.99, 0.99, 0.99, and 0.98 respectively, to teeth detection. The sensitivity, precision, F-1 score, and mAP-0.5 values were 0.98, 0.98, 0.98, and 0.98, respectively, to teeth segmentation. CONCLUSIONS: YOLO-v5 based models can have the potential to detect and enable the accurate segmentation of deciduous and permanent teeth using PRs of pediatric patients with mixed dentition.
目的:在全景放射影像(PR)解读中,牙齿的识别和编号是正确诊断的重要组成部分。本研究评估了 YOLO-v5 在基于 PR 对混合牙列儿童患者的乳牙和恒牙进行自动检测、分割和编号的有效性。
方法:使用 CranioCatch 标注程序对 3854 名混合儿科患者的 PR 进行了乳牙和恒牙的标注。数据集分为三个子集:训练集(n=3093,占总数的 80%)、验证集(n=387,占总数的 10%)和测试集(n=385,占总数的 10%)。开发了一种使用 YOLO-v5 模型的人工智能(AI)算法。
结果:牙齿检测的灵敏度、精度、F1 评分和平均精度-0.5(mAP-0.5)值分别为 0.99、0.99、0.99 和 0.98。牙齿分割的灵敏度、精度、F1 评分和 mAP-0.5 值分别为 0.98、0.98、0.98 和 0.98。
结论:基于 YOLO-v5 的模型有可能通过混合牙列儿童患者的 PR 检测并实现乳牙和恒牙的精确分割。
Dentomaxillofac Radiol. 2021-9-1
J Clin Pediatr Dent. 2022-7-1
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-5
BMC Med Imaging. 2021-8-13
Dentomaxillofac Radiol. 2022-2-1
Dentomaxillofac Radiol. 2024-1-11
Diagnostics (Basel). 2023-7-27
PeerJ Comput Sci. 2023-7-3
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024-7
Biomedicines. 2023-3-5