Suppr超能文献

脉冲低能量刺激会在心脏组织中引发电湍流。

Pulsed low-energy stimulation initiates electric turbulence in cardiac tissue.

机构信息

Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.

Institute for Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany.

出版信息

PLoS Comput Biol. 2021 Oct 8;17(10):e1009476. doi: 10.1371/journal.pcbi.1009476. eCollection 2021 Oct.

Abstract

Interruptions in nonlinear wave propagation, commonly referred to as wave breaks, are typical of many complex excitable systems. In the heart they lead to lethal rhythm disorders, the so-called arrhythmias, which are one of the main causes of sudden death in the industrialized world. Progress in the treatment and therapy of cardiac arrhythmias requires a detailed understanding of the triggers and dynamics of these wave breaks. In particular, two very important questions are: 1) What determines the potential of a wave break to initiate re-entry? and 2) How do these breaks evolve such that the system is able to maintain spatiotemporally chaotic electrical activity? Here we approach these questions numerically using optogenetics in an in silico model of human atrial tissue that has undergone chronic atrial fibrillation (cAF) remodelling. In the lesser studied sub-threshold illumination régime, we discover a new mechanism of wave break initiation in cardiac tissue that occurs for gentle slopes of the restitution characteristics. This mechanism involves the creation of conduction blocks through a combination of wavefront-waveback interaction, reshaping of the wave profile and heterogeneous recovery from the excitation of the spatially extended medium, leading to the creation of re-excitable windows for sustained re-entry. This finding is an important contribution to cardiac arrhythmia research as it identifies scenarios in which low-energy perturbations to cardiac rhythm can be potentially life-threatening.

摘要

非线性波传播的中断,通常称为波破裂,是许多复杂激发系统的典型特征。在心脏中,它们会导致致命的节律紊乱,即所谓的心律失常,这是工业化世界中心脏性猝死的主要原因之一。心律失常治疗和治疗的进展需要详细了解这些波破裂的触发因素和动力学。特别是,有两个非常重要的问题:1)是什么决定了波破裂引发折返的潜力?2)这些波破裂是如何演变的,使得系统能够维持时空混沌的电活动?在这里,我们使用慢性心房颤动(cAF)重塑后的人类心房组织的计算模型,通过光遗传学方法对这些问题进行了数值研究。在研究较少的亚阈值照明方案中,我们发现了一种在心脏组织中引发波破裂的新机制,这种机制发生在恢复特性的平缓斜率下。这种机制涉及通过波前-波后相互作用、波型重塑以及从空间扩展介质的兴奋中不均匀恢复的组合,在波的传播中创建传导阻滞,从而为持续折返创造可兴奋的窗口。这一发现是心律失常研究的一个重要贡献,因为它确定了低能量心脏节律扰动可能具有潜在致命性的情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c418/8528298/b4a830c46e87/pcbi.1009476.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验