Peng Xiran, Hao Xuechao, Zhu Tao
Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
Arch Orthop Trauma Surg. 2023 Feb;143(2):847-855. doi: 10.1007/s00402-021-04171-w. Epub 2021 Oct 8.
Postoperative infection is one of the most common postoperative complications in hip fracture surgery. It is related with increased morbidity and mortality. This study aimed at developing a nomogram to predict the individual probability of postoperative infection to facilitate perioperative decision-making.
In this retrospective study, we included all patients over 65 years old admitted for hip fracture in West China Hospital of Sichuan University from 1 January 2015 to 31 December 2019. Univariate and multivariate logistic regression analyses were used to identify significant predictors. We used all-subsets regression to screen an optimal model, and visualized the model through drawing nomogram. To evaluate the model performance, we applied receiver operating characteristic curve and calibration curve.
We enrolled 677 older patients. 136 (20.1%) patients developed postoperative infection during hospitalization. Variables retained in the final model were albumin [odds ratio (OR) 0.90, 95% confidence interval (CI) 0.84-0.96], cholesterol (OR 1.49, 95% CI 1.04-2.15), blood phosphorus (OR 0.16, 95% CI 0.05-0.48), high-density lipoprotein (OR 0.42, 95% CI 0.19-0.89), surgery type (OR 2.27, 95% CI 1.35-3.90), smoking (OR 1.95, 95% CI 1.02-3.66), American Society of Anesthesiologists classification [class III (OR 1.02, 95% CI 0.55-1.93); class IV (OR 1.93, 95% CI 0.76-4.82)], and chronic pulmonary disease (OR 2.16, 95% CI 1.25-3.68). The C-index of the nomogram was 0.752 (95% CI 0.697-0.806). Calibration curve showed good agreement between predicted value and observed outcome. In the validation group, our nomogram showed an area under the receiver operating characteristic curve of 0.723 (95% CI 0.639-0.807).
Our nomogram showed good discrimination ability in predicting individual probability of postoperative infection among older patients with hip fracture surgery. The nomogram could help clinicians identify patients at high risk of postoperative infection before surgery.
术后感染是髋部骨折手术中最常见的术后并发症之一。它与发病率和死亡率的增加有关。本研究旨在开发一种列线图,以预测术后感染的个体概率,从而便于围手术期决策。
在这项回顾性研究中,我们纳入了2015年1月1日至2019年12月31日在四川大学华西医院因髋部骨折入院的所有65岁以上患者。采用单因素和多因素逻辑回归分析来确定显著的预测因素。我们使用全子集回归来筛选最优模型,并通过绘制列线图将模型可视化。为评估模型性能,我们应用了受试者工作特征曲线和校准曲线。
我们纳入了677例老年患者。136例(20.1%)患者在住院期间发生了术后感染。最终模型中保留的变量有白蛋白[比值比(OR)0.90,95%置信区间(CI)0.84 - 0.96]、胆固醇(OR 1.49,95% CI 1.04 - 2.15)、血磷(OR 0.16,95% CI 0.05 - 0.48)、高密度脂蛋白(OR 0.42,95% CI 0.19 - 0.89)、手术类型(OR 2.27,95% CI 1.35 - 3.90)、吸烟(OR 1.95,95% CI 1.02 - 3.66)、美国麻醉医师协会分级[Ⅲ级(OR 1.02,95% CI 0.55 - 1.93);Ⅳ级(OR 1.93,95% CI 0.76 - 4.82)]以及慢性肺病(OR 2.16,95% CI 1.25 - 3.68)。列线图的C指数为0.752(95% CI 0.697 - 0.806)。校准曲线显示预测值与观察结果之间具有良好的一致性。在验证组中,我们的列线图在受试者工作特征曲线下的面积为0.723(95% CI 0.639 - 0.807)。
我们的列线图在预测髋部骨折手术老年患者术后感染的个体概率方面具有良好的区分能力。该列线图可帮助临床医生在手术前识别术后感染高危患者。