Suppr超能文献

外显子测序数据中隐匿性临床相关结构变异的检测可提高发育障碍的诊断率。

Detecting cryptic clinically relevant structural variation in exome-sequencing data increases diagnostic yield for developmental disorders.

机构信息

Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton CB10 1SA, UK.

Department of Human Genetics, KU Leuven, Herestraat 49, Box 602, Leuven 3000, Belgium.

出版信息

Am J Hum Genet. 2021 Nov 4;108(11):2186-2194. doi: 10.1016/j.ajhg.2021.09.010. Epub 2021 Oct 8.

Abstract

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.

摘要

结构变异(SV)描述了一类大小大于 50bp 的广泛遗传变异。SV 可导致多种遗传疾病,并在罕见的发育障碍(DD)中普遍存在。患有 DD 的个体通常会接受染色体微阵列(CMA)的诊断性检测,以识别大片段拷贝数变异(CNV)和/或进行单基因、基因组合或外显子测序(ES),以识别单核苷酸变异、小插入/缺失和 CNV。然而,通过常规分析无法检测到的具有致病性 SV 的个体往往仍未被诊断。因此,我们开发了工具 InDelible,它可通过分析短读测序数据,检测到与 SV 断点特征相符的分离读簇。我们将 InDelible 应用于 13438 名患有严重 DD 的个体,这些个体是作为解码发育障碍(DDD)研究的一部分招募的,并在先前与 DD 相关的基因中发现了 63 个罕见的、有害的变异,这些变异是通过标准的 SNV、插入缺失或 CNV 发现方法所遗漏的。对这 63 个变异进行临床评估后确定,其中约一半(30/63)可能具有致病性。InDelible 特别适用于确定大小在 21bp 到 500bp 之间的变异,将 DDD 在此大小范围内发现的潜在致病性变异总数增加了 42.9%。特别引人注目的是,在 MECP2 中发现了七个经确认的新生变异,占 DDD 研究参与者中所有新生蛋白截断变异的 35.0%。InDelible 为发现最有可能被标准分析工作流程遗漏的致病性 SV 提供了一个框架,并有潜力提高 ES 在广泛遗传疾病中的诊断效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/964a/8595893/fb480e378f60/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验