Suppr超能文献

外显子组测序数据在罕见遗传疾病常规诊断中的 CNV 检测:机遇与局限。

CNV Detection from Exome Sequencing Data in Routine Diagnostics of Rare Genetic Disorders: Opportunities and Limitations.

机构信息

Division of Genetic Medicine, Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland.

出版信息

Genes (Basel). 2021 Sep 16;12(9):1427. doi: 10.3390/genes12091427.

Abstract

To assess the potential of detecting copy number variations (CNVs) directly from exome sequencing (ES) data in diagnostic settings, we developed a CNV-detection pipeline based on ExomeDepth software and applied it to ES data of 450 individuals. Initially, only CNVs affecting genes in the requested diagnostic gene panels were scored and tested against arrayCGH results. Pathogenic CNVs were detected in 18 individuals. Most detected CNVs were larger than 400 kb (11/18), but three individuals had small CNVs impacting one or a few exons only and were thus not detectable by arrayCGH. Conversely, two pathogenic CNVs were initially missed, as they impacted genes not included in the original gene panel analysed, and a third one was missed as it was in a poorly covered region. The overall combined diagnostic rate (SNVs + CNVs) in our cohort was 36%, with wide differences between clinical domains. We conclude that (1) the ES-based CNV pipeline detects efficiently large and small pathogenic CNVs, (2) the detection of CNV relies on uniformity of sequencing and good coverage, and (3) in patients who remain unsolved by the gene panel analysis, CNV analysis should be extended to all captured genes, as diagnostically relevant CNVs may occur everywhere in the genome.

摘要

为了评估直接从外显子组测序(ES)数据中检测拷贝数变异(CNVs)在诊断环境中的潜力,我们开发了一个基于 ExomeDepth 软件的 CNV 检测管道,并将其应用于 450 个人的 ES 数据。最初,仅对影响请求的诊断基因面板中基因的 CNVs 进行评分,并与 arrayCGH 结果进行测试。在 18 个人中检测到致病性 CNVs。大多数检测到的 CNVs 大于 400kb(11/18),但有三个人的 CNVs 仅影响一个或几个外显子,因此无法通过 arrayCGH 检测到。相反,最初错过了两个致病性 CNVs,因为它们影响了原始分析基因面板中未包含的基因,第三个则被遗漏了,因为它位于覆盖较差的区域。我们队列的总体综合诊断率(SNVs+CNVs)为 36%,不同临床领域之间存在很大差异。我们得出结论:(1)基于 ES 的 CNV 管道可以有效地检测大的和小的致病性 CNVs;(2)CNV 的检测依赖于测序的一致性和良好的覆盖度;(3)对于通过基因面板分析仍未解决的患者,应将 CNV 分析扩展到所有捕获的基因,因为在基因组的任何地方都可能发生与诊断相关的 CNVs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8b/8472439/2f65212ea4b0/genes-12-01427-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验