Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
Eur J Hum Genet. 2024 Feb;32(2):200-208. doi: 10.1038/s41431-023-01478-7. Epub 2023 Oct 19.
Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.
移动元件插入(MEI)是已知的遗传疾病的原因,但由于遗传测试方法的技术限制,一直未得到充分探索。已经开发了各种生物信息学工具来识别下一代测序数据中的 MEI。然而,大多数工具都是专门为基因组测序(GS)数据而开发的,而不是外显子组测序(ES)数据,后者仍然更广泛地用于常规诊断测试。在这项研究中,我们在 ES 数据和公开可用基因组样本(HG002、NA12878)的 GS 数据上对六个 MEI 检测工具(ERVcaller、MELT、Mobster、SCRAMble、TEMP2 和 xTea)进行了基准测试。对于我们评估的所有工具,我们评估了不同过滤策略的灵敏度和精度。结果表明,ES 数据和 GS 数据之间的工具性能存在很大差异。MELT 在 ES 数据上表现最佳,与 SCRAMble 结合使用可大大提高 MEI 的检测率。通过将这两种工具应用于 Solve-RD 的 10890 个 ES 样本和 Radboudumc 的 52624 个样本,我们能够诊断出 10 名患者,这些患者迄今为止通过常规 ES 分析仍未确诊。我们的研究表明,MELT 和 SCRAMble 可可靠地用于识别 ES 数据中具有临床意义的 MEI。这可能会导致常规临床 ES 中每 3000 至 4000 名患者中有 1 名得到额外诊断。