Kim Byungjai, Kwon Kinam, Oh Changheun, Park Hyunwook
Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Guseong-dong, Yuseong-gu, Daejeon, Republic of Korea.
Samsung Electronics, Maetan-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
Med Phys. 2021 Nov;48(11):7346-7359. doi: 10.1002/mp.15269. Epub 2021 Oct 26.
Anomaly detection in magnetic resonance imaging (MRI) is to distinguish the relevant biomarkers of diseases from those of normal tissues. In this paper, an unsupervised algorithm is proposed for pixel-level anomaly detection in multicontrast MRI.
A deep neural network is developed, which uses only normal MR images as training data. The network has the two stages of feature generation and density estimation. For feature generation, relevant features are extracted from multicontrast MR images by performing contrast translation and dimension reduction. For density estimation, the distributions of the extracted features are estimated by using Gaussian mixture model (GMM). The two processes are trained to estimate normative distributions well presenting large normal datasets. In test phases, the proposed method can detect anomalies by measuring log-likelihood that a test sample belongs to the estimated normative distributions.
The proposed method and its variants were applied to detect glioblastoma and ischemic stroke lesion. Comparison studies with six previous anomaly detection algorithms demonstrated that the proposed method achieved relevant improvements in quantitative and qualitative evaluations. Ablation studies by removing each module from the proposed framework validated the effectiveness of each proposed module.
The proposed deep learning framework is an effective tool to detect anomalies in multicontrast MRI. The unsupervised approaches would have great potentials in detecting various lesions where annotated lesion data collection is limited.
磁共振成像(MRI)中的异常检测旨在区分疾病的相关生物标志物与正常组织的生物标志物。本文提出了一种用于多对比度MRI中像素级异常检测的无监督算法。
开发了一种深度神经网络,该网络仅使用正常MR图像作为训练数据。该网络具有特征生成和密度估计两个阶段。对于特征生成,通过执行对比度转换和降维从多对比度MR图像中提取相关特征。对于密度估计,使用高斯混合模型(GMM)估计提取特征的分布。对这两个过程进行训练,以很好地估计呈现大量正常数据集的规范分布。在测试阶段,所提出的方法可以通过测量测试样本属于估计的规范分布的对数似然性来检测异常。
将所提出的方法及其变体应用于检测胶质母细胞瘤和缺血性中风病变。与之前六种异常检测算法的比较研究表明,所提出的方法在定量和定性评估方面取得了相关改进。通过从所提出的框架中移除每个模块进行的消融研究验证了每个所提出模块的有效性。
所提出的深度学习框架是检测多对比度MRI中异常的有效工具。无监督方法在检测注释病变数据收集有限的各种病变方面具有巨大潜力。