Department of Theoretical Physics, Institute of Physics, Universidad Nacional Autónoma de México, Ciudad de México, México.
J Biomol Struct Dyn. 2022;40(23):13207-13217. doi: 10.1080/07391102.2021.1987988. Epub 2021 Oct 10.
The damage of the structure can affect the correct functioning of the cellular processes. This work investigates the required forces to dissociate the Watson-Crick () base pairs into and , and into and . The base pairs are immersed in water under realistic conditions of temperature, volume, and density that reproduce the main characteristics of a biological system. The simulations are based on first-principles molecular dynamics combined with steering atomic forces. In addition to the force intensities, the charge transfers between the nucleic acid bases, energy variations, and temperature fluctuations in the cleavage moments are reported. With the purpose of evaluating the effects of the aqueous medium, simulations of the base pairs in vacuum are included. The results considering the solvated medium are consistent with the experimental measurements, and show the importance of the aqueous solution to regulate the structural modifications of the nucleic acid bases. The investigation contributes with a novel molecular model in molecular simulations, and to better understand the biological processes where the compounds play an active role in life forms.Communicated by Ramaswamy H. Sarma.
结构的损伤会影响细胞过程的正常功能。本工作研究了将沃森-克里克(Watson-Crick)碱基对解离为 和 ,以及 将 解离为 和 的所需力。碱基对在水相条件下进行模拟,这些条件模拟了温度、体积和密度等真实条件,重现了生物系统的主要特征。模拟基于第一性原理分子动力学和导向原子力相结合的方法。除了力强度外,还报告了在断裂时刻核酸碱基之间的电荷转移、能量变化和温度波动。为了评估水相的影响,还包括了在真空中的 碱基对的模拟。考虑溶剂化介质的结果与实验测量结果一致,并表明水溶液在调节核酸碱基的结构修饰方面的重要性。该研究为分子模拟提供了一个新的分子模型,并有助于更好地理解 化合物在生命形式中发挥积极作用的生物学过程。由 Ramaswamy H. Sarma 传达。