Suppr超能文献

使用合成医学短语替代临床特征:医学文本数据增强技术。

Substituting clinical features using synthetic medical phrases: Medical text data augmentation techniques.

机构信息

Victoria University of Wellington, Wellington, New Zealand.

Medius Health, Sydney, Australia.

出版信息

Artif Intell Med. 2021 Oct;120:102167. doi: 10.1016/j.artmed.2021.102167. Epub 2021 Sep 10.

Abstract

Biomedical natural language processing (NLP) has an important role in extracting consequential information in medical discharge notes. Detecting meaningful features from unstructured notes is a challenging task in medical document classification. The domain specific phrases and different synonyms within the medical documents make it hard to analyze them. Analyzing clinical notes becomes more challenging for short documents like abstract texts. All of these can result in poor classification performance, especially when there is a shortage of the clinical data in real life. Two new approaches (an ontology-guided approach and a combined ontology-based with dictionary-based approach) are suggested for augmenting medical data to enrich training data. Three different deep learning approaches are used to evaluate the classification performance of the proposed methods. The obtained results show that the proposed methods improved the classification accuracy in clinical notes classification.

摘要

生物医学自然语言处理(NLP)在从医疗出院记录中提取相关信息方面具有重要作用。从非结构化的记录中检测有意义的特征是医学文档分类中的一项具有挑战性的任务。医学文档中的特定领域短语和不同同义词使得分析它们变得困难。对于像摘要文本这样的短文档,分析临床记录变得更加具有挑战性。所有这些都可能导致分类性能不佳,尤其是在现实生活中临床数据不足的情况下。为了丰富训练数据,提出了两种新方法(本体指导方法和基于本体与基于词典相结合的方法)来扩充医学数据。使用三种不同的深度学习方法来评估所提出方法的分类性能。结果表明,所提出的方法提高了临床记录分类的分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验