From the Kenner Family Research Fund, New York, NY.
Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.
Pancreas. 2021 Aug 1;50(7):916-922. doi: 10.1097/MPA.0000000000001882.
The potential of artificial intelligence (AI) applied to clinical data from electronic health records (EHRs) to improve early detection for pancreatic and other cancers remains underexplored. The Kenner Family Research Fund, in collaboration with the Cancer Biomarker Research Group at the National Cancer Institute, organized the workshop entitled: "Early Detection of Pancreatic Cancer: Opportunities and Challenges in Utilizing Electronic Health Records (EHR)" in March 2021. The workshop included a select group of panelists with expertise in pancreatic cancer, EHR data mining, and AI-based modeling. This review article reflects the findings from the workshop and assesses the feasibility of AI-based data extraction and modeling applied to EHRs. It highlights the increasing role of data sharing networks and common data models in improving the secondary use of EHR data. Current efforts using EHR data for AI-based modeling to enhance early detection of pancreatic cancer show promise. Specific challenges (biology, limited data, standards, compatibility, legal, quality, AI chasm, incentives) are identified, with mitigation strategies summarized and next steps identified.
人工智能(AI)在电子健康记录(EHR)中的临床数据中的应用潜力,以改善胰腺癌和其他癌症的早期检测,仍未得到充分探索。肯纳家族研究基金与国家癌症研究所的癌症生物标志物研究小组合作,于 2021 年 3 月组织了题为“利用电子健康记录(EHR)早期检测胰腺癌:机遇与挑战”的研讨会。该研讨会邀请了一组在胰腺癌、EHR 数据挖掘和基于 AI 的建模方面具有专业知识的精选小组成员。这篇综述文章反映了研讨会的研究结果,并评估了将基于 AI 的数据提取和建模应用于 EHR 的可行性。它强调了数据共享网络和通用数据模型在改善 EHR 数据二次利用方面的作用越来越大。目前,利用 EHR 数据进行基于 AI 的建模以增强胰腺癌的早期检测显示出了前景。具体挑战(生物学、数据有限、标准、兼容性、法律、质量、AI 鸿沟、激励措施)已被确定,并总结了缓解策略,确定了下一步措施。
Nat Rev Genet. 2012-5-2
Transl Vis Sci Technol. 2020-2-27
Pancreas. 2015-7
J Med Internet Res. 2023-3-31
Comput Biol Med. 2023-5
Pancreas. 2025-7-1
Diagnostics (Basel). 2024-1-12
Acta Stomatol Croat. 2023-3
Expert Rev Gastroenterol Hepatol. 2023
Nat Commun. 2023-4-28