Biomedical Data Science Lab, Deloitte Consulting LLP, Arlington, VA, USA.
Department of Biology, George Washington University, Washington, DC, USA.
Cancer Biomark. 2022;33(2):173-184. doi: 10.3233/CBM-210301.
Artificial intelligence (AI), including machine learning (ML) and deep learning, has the potential to revolutionize biomedical research. Defined as the ability to "mimic" human intelligence by machines executing trained algorithms, AI methods are deployed for biomarker discovery.
We detail the advancements and challenges in the use of AI for biomarker discovery in ovarian and pancreatic cancer. We also provide an overview of associated regulatory and ethical considerations.
We conducted a literature review using PubMed and Google Scholar to survey the published findings on the use of AI in ovarian cancer, pancreatic cancer, and cancer biomarkers.
Most AI models associated with ovarian and pancreatic cancer have yet to be applied in clinical settings, and imaging data in many studies are not publicly available. Low disease prevalence and asymptomatic disease limits data availability required for AI models. The FDA has yet to qualify imaging biomarkers as effective diagnostic tools for these cancers.
Challenges associated with data availability, quality, bias, as well as AI transparency and explainability, will likely persist. Explainable and trustworthy AI efforts will need to continue so that the research community can better understand and construct effective models for biomarker discovery in rare cancers.
人工智能(AI),包括机器学习(ML)和深度学习,有可能彻底改变生物医学研究。AI 被定义为机器通过执行经过训练的算法来“模拟”人类智能的能力,用于发现生物标志物。
我们详细介绍了 AI 在卵巢癌和胰腺癌的生物标志物发现中的应用的进展和挑战。我们还概述了相关的监管和伦理考虑因素。
我们使用 PubMed 和 Google Scholar 进行文献综述,调查了关于 AI 在卵巢癌、胰腺癌和癌症生物标志物中的应用的已发表研究结果。
与卵巢癌和胰腺癌相关的大多数 AI 模型尚未在临床环境中应用,许多研究中的成像数据不可用。低疾病发生率和无症状疾病限制了 AI 模型所需的数据可用性。FDA 尚未将成像生物标志物确认为这些癌症的有效诊断工具。
与数据可用性、质量、偏差以及 AI 的透明度和可解释性相关的挑战可能会持续存在。需要持续进行可解释和值得信赖的 AI 工作,以便研究界能够更好地理解和构建用于罕见癌症的生物标志物发现的有效模型。