Suppr超能文献

用于分布式可互操作闭环神经调节控制系统的软件定义工作流

Software-Defined Workflows for Distributed Interoperable Closed-Loop Neuromodulation Control Systems.

作者信息

Kathiravelu Pradeeban, Sarikhani Parisa, Gu Ping, Mahmoudi Babak

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA.

Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

IEEE Access. 2021;9:131733-131745. doi: 10.1109/access.2021.3113892. Epub 2021 Sep 20.

Abstract

Closed-loop neuromodulation control systems facilitate regulating abnormal physiological processes by recording neurophysiological activities and modifying those activities through feedback loops. Designing such systems requires interoperable service composition, consisting of cycles. Workflow frameworks enable standard modular architectures, offering reproducible automated pipelines. However, those frameworks limit their support to executions represented by directed acyclic graphs (DAGs). DAGs need a pre-defined start and end execution step with no cycles, thus preventing the researchers from using the standard workflow languages as-is for closed-loop workflows and pipelines. In this paper, we present , a workflow orchestration framework for distributed analytics systems. proposes a Software-Defined Workflows approach, inspired by Software-Defined Networking (SDN), which separates the data flows across the service instances from the control flows. enables creating interoperable workflows with closed loops by defining the workflows in a logically centralized approach, from microservices representing each execution step. The centralized orchestrator facilitates dynamically composing and managing scientific workflows from the services and existing workflows, with minimal restrictions. represents complex workflows as directed hypergraphs (DHGs) rather than DAGs. We illustrate a seamless execution of neuromodulation control systems by supporting loops in a workflow as the use case of . Our evaluations highlight the feasibility, flexibility, performance, and scalability of in modeling and executing closed-loop workflows.

摘要

闭环神经调节控制系统通过记录神经生理活动并通过反馈回路修改这些活动来促进对异常生理过程的调节。设计这样的系统需要可互操作的服务组合,其中包含循环。工作流框架支持标准的模块化架构,提供可重复的自动化管道。然而,这些框架将其支持限制在由有向无环图(DAG)表示的执行上。DAG需要一个预定义的开始和结束执行步骤,且无循环,因此阻止研究人员直接将标准工作流语言用于闭环工作流和管道。在本文中,我们提出了一种用于分布式分析系统的工作流编排框架。该框架提出了一种受软件定义网络(SDN)启发的软件定义工作流方法,它将跨服务实例的数据流与控制流分离。通过以逻辑集中的方式从表示每个执行步骤的微服务定义工作流,该框架能够创建具有闭环的可互操作工作流。集中式编排器便于以最小的限制从服务和现有工作流动态组合和管理科学工作流。该框架将复杂工作流表示为有向超图(DHG)而非DAG。我们通过支持工作流中的循环来说明神经调节控制系统的无缝执行,以此作为该框架的用例。我们的评估突出了该框架在建模和执行闭环工作流方面的可行性、灵活性、性能和可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d03/8500400/038af41a03d4/nihms-1744390-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验