Suppr超能文献

在电刺激下基于生物物理的神经群体均场模型。

Biophysically grounded mean-field models of neural populations under electrical stimulation.

机构信息

Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany.

Bernstein Center for Computational Neuroscience Berlin, Germany.

出版信息

PLoS Comput Biol. 2020 Apr 23;16(4):e1007822. doi: 10.1371/journal.pcbi.1007822. eCollection 2020 Apr.

Abstract

Electrical stimulation of neural systems is a key tool for understanding neural dynamics and ultimately for developing clinical treatments. Many applications of electrical stimulation affect large populations of neurons. However, computational models of large networks of spiking neurons are inherently hard to simulate and analyze. We evaluate a reduced mean-field model of excitatory and inhibitory adaptive exponential integrate-and-fire (AdEx) neurons which can be used to efficiently study the effects of electrical stimulation on large neural populations. The rich dynamical properties of this basic cortical model are described in detail and validated using large network simulations. Bifurcation diagrams reflecting the network's state reveal asynchronous up- and down-states, bistable regimes, and oscillatory regions corresponding to fast excitation-inhibition and slow excitation-adaptation feedback loops. The biophysical parameters of the AdEx neuron can be coupled to an electric field with realistic field strengths which then can be propagated up to the population description. We show how on the edge of bifurcation, direct electrical inputs cause network state transitions, such as turning on and off oscillations of the population rate. Oscillatory input can frequency-entrain and phase-lock endogenous oscillations. Relatively weak electric field strengths on the order of 1 V/m are able to produce these effects, indicating that field effects are strongly amplified in the network. The effects of time-varying external stimulation are well-predicted by the mean-field model, further underpinning the utility of low-dimensional neural mass models.

摘要

电刺激神经系统是理解神经动力学并最终开发临床治疗方法的关键工具。许多电刺激应用都会影响到大量的神经元。然而,大规模尖峰神经元网络的计算模型的模拟和分析非常困难。我们评估了兴奋和抑制自适应指数积分和放电(AdEx)神经元的简化平均场模型,该模型可用于有效地研究电刺激对大型神经元群体的影响。详细描述了这个基本皮质模型的丰富动态特性,并使用大型网络模拟进行了验证。反映网络状态的分岔图揭示了异步上升和下降状态、双稳定状态以及与快速兴奋-抑制和缓慢兴奋-适应反馈环相对应的振荡区域。AdEx 神经元的生物物理参数可以与具有实际场强的电场耦合,然后可以将其传播到群体描述。我们展示了在分岔的边缘,直接电输入如何引起网络状态的转变,例如开启和关闭群体率的振荡。振荡输入可以频率锁定和相位锁定内源性振荡。相对较弱的电场强度约为 1V/m 就能产生这些效果,这表明场效应在网络中被强烈放大。时变外部刺激的影响可以通过平均场模型很好地预测,进一步支持了低维神经质量模型的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/289b/7200022/e8ae20aebfec/pcbi.1007822.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验