Suppr超能文献

用于监测精准医疗计划中下一代测序和生物信息周转时间的统计过程控制图

Statistical Process Control Charts for Monitoring Next-Generation Sequencing and Bioinformatics Turnaround in Precision Medicine Initiatives.

作者信息

Jain Sneha Rajiv, Sim Wilson, Ng Cheng Han, Chin Yip Han, Lim Wen Hui, Syn Nicholas L, Kamal Nur Haidah Bte Ahmad, Gupta Mehek, Heong Valerie, Lee Xiao Wen, Sapari Nur Sabrina, Koh Xue Qing, Isa Zul Fazreen Adam, Ho Lucius, O'Hara Caitlin, Ulagapan Arvindh, Gu Shi Yu, Shroff Kashyap, Weng Rei Chern, Lim Joey S Y, Lim Diana, Pang Brendan, Ng Lai Kuan, Wong Andrea, Soo Ross Andrew, Yong Wei Peng, Chee Cheng Ean, Lee Soo-Chin, Goh Boon-Cher, Soong Richie, Tan David S P

机构信息

Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore.

出版信息

Front Oncol. 2021 Sep 24;11:736265. doi: 10.3389/fonc.2021.736265. eCollection 2021.

Abstract

PURPOSE

Precision oncology, such as next generation sequencing (NGS) molecular analysis and bioinformatics are used to guide targeted therapies. The laboratory turnaround time (TAT) is a key performance indicator of laboratory performance. This study aims to formally apply statistical process control (SPC) methods such as CUSUM and EWMA to a precision medicine programme to analyze the learning curves of NGS and bioinformatics processes.

PATIENTS AND METHODS

Trends in NGS and bioinformatics TAT were analyzed using simple regression models with TAT as the dependent variable and chronologically-ordered case number as the independent variable. The M-estimator "robust" regression and negative binomial regression were chosen to serve as sensitivity analyses to each other. Next, two popular statistical process control (SPC) approaches which are CUSUM and EWMA were utilized and the CUSUM log-likelihood ratio (LLR) charts were also generated. All statistical analyses were done in Stata version 16.0 (StataCorp), and nominal P < 0.05 was considered to be statistically significant.

RESULTS

A total of 365 patients underwent successful molecular profiling. Both the robust linear model and negative binomial model showed statistically significant reductions in TAT with accumulating experience. The EWMA and CUSUM charts of overall TAT largely corresponded except that the EWMA chart consistently decreased while the CUSUM analyses indicated improvement only after a nadir at the 82 case. CUSUM analysis found that the bioinformatics team took a lower number of cases (54 cases) to overcome the learning curve compared to the NGS team (85 cases).

CONCLUSION

As NGS and bioinformatics lead precision oncology into the forefront of cancer management, characterizing the TAT of NGS and bioinformatics processes improves the timeliness of data output by potentially spotlighting problems early for rectification, thereby improving care delivery.

摘要

目的

精准肿瘤学,如下一代测序(NGS)分子分析和生物信息学,被用于指导靶向治疗。实验室周转时间(TAT)是实验室性能的关键指标。本研究旨在将累积和加权移动平均(CUSUM)和指数加权移动平均(EWMA)等统计过程控制(SPC)方法正式应用于精准医学项目,以分析NGS和生物信息学过程的学习曲线。

患者与方法

使用以TAT为因变量、按时间顺序排列的病例数为自变量的简单回归模型分析NGS和生物信息学TAT的趋势。选择M估计“稳健”回归和负二项回归作为相互的敏感性分析。接下来,使用两种流行的统计过程控制(SPC)方法,即CUSUM和EWMA,并生成CUSUM对数似然比(LLR)图。所有统计分析均在Stata 16.0版本(StataCorp)中进行,名义P<0.05被认为具有统计学意义。

结果

共有365例患者成功进行了分子分析。稳健线性模型和负二项模型均显示,随着经验积累,TAT有统计学意义的降低。总体TAT的EWMA图和CUSUM图在很大程度上相符,只是EWMA图持续下降,而CUSUM分析表明仅在第82例出现最低点后才有所改善。CUSUM分析发现,与NGS团队(85例)相比,生物信息学团队克服学习曲线所需的病例数较少(54例)。

结论

随着NGS和生物信息学将精准肿瘤学引领至癌症管理的前沿,表征NGS和生物信息学过程的TAT可通过潜在地尽早发现问题以进行纠正来提高数据输出的及时性,从而改善医疗服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6784/8498582/7903938a35d6/fonc-11-736265-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验