School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
Lab Chip. 2021 Dec 7;21(24):4760-4771. doi: 10.1039/d1lc00628b.
Controllable on-chip multimodal manipulation of micro-objects in microfluidic devices is urgently required for enhancing the efficiency of potential biomedical applications. However, fixed design and driving models make it difficult to achieve switchable multifunction efficiently in a single device. In this study, a versatile bubble-based acoustofluidic device is proposed for multimodal manipulation of micro-objects in a biocompatible manner. Identical bubbles trapped over the bottom microcavities are made to flexibly switch between four different oscillatory motions by varying the applied frequency to generate corresponding modes of streaming patterns in the microchannel. Such regular modes enable stable transportation, trapping, 3D rotation, and circular revolution of the micro-objects, which were experimentally and numerically verified. The mode-switchable manipulations can be noninvasively applied to particles, cells, and organisms with different sizes, shapes, and quantities and can be controlled by key driving parameters. Moreover, 3D cell reconstruction is developed by applying the out-of-plane rotational mode and analyzed for illustration of cell surface morphology while quantifying reliably basic cell properties. Finally, a simple platform is established to integrate user-friendly function control and reconstruction analysis. The mode-switchable acoustofluidic device features a versatile, controllable, and contactless micro-object manipulation method, which provides an efficient solution for biomedical applications.
在微流控设备中对微物体进行可控的芯片多模态操作对于提高潜在的生物医学应用的效率是迫切需要的。然而,固定的设计和驱动模型使得在单个设备中难以有效地实现可切换的多功能性。在本研究中,提出了一种通用的基于气泡的声流控装置,用于以生物相容的方式对微物体进行多模态操作。通过改变施加的频率,使底部微腔上捕获的相同气泡在四种不同的振荡运动之间灵活切换,从而在微通道中产生相应的流动模式。这种规则的模式可以实现微物体的稳定传输、捕获、3D 旋转和圆形旋转,实验和数值验证都证明了这一点。这种模式可切换的操作可以非侵入性地应用于具有不同大小、形状和数量的颗粒、细胞和生物体,并可以通过关键驱动参数进行控制。此外,通过施加面外旋转模式来进行 3D 细胞重建,并进行细胞表面形态的分析,同时可靠地量化基本的细胞特性。最后,建立了一个简单的平台来集成用户友好的功能控制和重建分析。这种模式可切换的声流控装置具有通用、可控和非接触式的微物体操作方法,为生物医学应用提供了一种有效的解决方案。