Suppr超能文献

基于聚二甲基硅氧烷(PDMS)的气体渗透性,利用声学振荡气泡对微物体进行操控。

Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.

作者信息

Liu Bendong, Tian Baohua, Yang Xu, Li Mohan, Yang Jiahui, Li Desheng, Oh Kwang W

机构信息

College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China.

Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, New York 14260, USA.

出版信息

Biomicrofluidics. 2018 Jun 8;12(3):034111. doi: 10.1063/1.5028419. eCollection 2018 May.

Abstract

This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10 m in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.

摘要

本文基于聚二甲基硅氧烷的气体渗透性,提出了一种利用位置可控的声学振荡气泡对微物体进行新颖的操纵方法。捕获在侧通道内的振荡气泡会吸引相邻的微物体,并且通过在侧通道和空气通道之间产生临时压力差来控制气液界面的位置。为了证明该方法在技术应用中的可行性,成功捕获、运输并释放了直径为10μm的聚苯乙烯微粒。我们的实验证明了压力差对气液界面移动速度的影响,并且还通过改变声激发频率和压力差来表征操纵性能。由于我们的操纵方法中气泡的产生和气液界面的移动不需要任何电化学反应和任何高温,这种片上操纵方法为处理诸如颗粒、细胞和其他实体等微物体提供了一种可控、高效且无创的工具。整个操纵过程,包括颗粒的捕获、运输和释放,耗时不到1分钟。它可用于在微流控装置中选择细胞和颗粒或更换细胞培养基。

相似文献

4
Manipulation of biological objects using acoustic bubbles: a review.利用声泡对生物物体进行操作:综述
Integr Comp Biol. 2014 Dec;54(6):959-68. doi: 10.1093/icb/icu091. Epub 2014 Jun 23.
10
The dynamics of a non-equilibrium bubble near bio-materials.生物材料附近非平衡气泡的动力学。
Phys Med Biol. 2009 Oct 21;54(20):6313-36. doi: 10.1088/0031-9155/54/20/019. Epub 2009 Oct 7.

本文引用的文献

1
Soft Lithography.软光刻
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
5
LCAT DNA shearing.卵磷脂胆固醇酰基转移酶DNA剪切
J Lab Autom. 2014 Apr;19(2):163-70. doi: 10.1177/2211068213495546. Epub 2013 Jul 12.
10
Efficient manipulation of microparticles in bubble streaming flows.在气泡流中高效操纵微颗粒。
Biomicrofluidics. 2012 Mar;6(1):12801-1280111. doi: 10.1063/1.3654949. Epub 2012 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验