Suppr超能文献

将随机效应视为观察到的与潜在预测因子:小样本中的偏差-方差权衡。

Treating random effects as observed versus latent predictors: The bias-variance tradeoff in small samples.

机构信息

Human Development and Family Studies, Department of Human Ecology, University of California at Davis, Davis, California, USA.

Department of Psychology, University of California at Davis, Davis, California, USA.

出版信息

Br J Math Stat Psychol. 2022 Feb;75(1):158-181. doi: 10.1111/bmsp.12253. Epub 2021 Oct 10.

Abstract

Random effects in longitudinal multilevel models represent individuals' deviations from population means and are indicators of individual differences. Researchers are often interested in examining how these random effects predict outcome variables that vary across individuals. This can be done via a two-step approach in which empirical Bayes (EB) estimates of the random effects are extracted and then treated as observed predictor variables in follow-up regression analyses. This approach ignores the unreliability of EB estimates, leading to underestimation of regression coefficients. As such, previous studies have recommended a multilevel structural equation modeling (ML-SEM) approach that treats random effects as latent variables. The current study uses simulation and empirical data to show that a bias-variance tradeoff exists when selecting between the two approaches. ML-SEM produces generally unbiased regression coefficient estimates but also larger standard errors, which can lead to lower power than the two-step approach. Implications of the results for model selection and alternative solutions are discussed.

摘要

随机效应在纵向多层次模型中代表个体与总体平均值的偏差,是个体差异的指标。研究人员通常有兴趣研究这些随机效应如何预测个体之间变化的结果变量。这可以通过两步法来实现,其中提取随机效应的经验贝叶斯(EB)估计值,然后将其作为后续回归分析中的观察预测变量。这种方法忽略了 EB 估计的不可靠性,导致回归系数的低估。因此,之前的研究建议采用将随机效应视为潜在变量的多层次结构方程建模(ML-SEM)方法。本研究使用模拟和实证数据表明,在两种方法之间进行选择时存在偏差方差权衡。ML-SEM 产生的回归系数估计通常是无偏的,但标准误差也较大,这可能导致其功效低于两步法。讨论了结果对模型选择和替代解决方案的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验