Department of Psychology and Human Development, Vanderbilt University.
Department of Management, Arizona State University.
Psychol Methods. 2016 Jun;21(2):189-205. doi: 10.1037/met0000052. Epub 2015 Dec 14.
Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record
社会科学家越来越关注多层次假设、数据和统计模型,以及预测因素之间的调节或相互作用。其结果是关注在分析的层次内和层次之间的多层次调节的假设和检验。不幸的是,现有的多层次调节方法存在多种缺点,包括分析层次上混淆的效应以及由于使用观察到的聚类平均值而不是潜在变量(即“随机截距”)来表示更高层次的结构而产生的偏差。为了克服这些问题并阐明多层次调节效应的本质,我们引入了多层次结构方程建模(MSEM)逻辑,该逻辑阐明了现有实践中存在的问题的本质,并通过潜在变量相互作用来解决这些问题。这种补救措施使用随机系数和/或潜在调节结构方程(LMS)进行无偏的多层次调节检验。我们描述了我们的方法,并使用 Mplus 语法提供了一个使用公开可用的“高中及以后”数据的示例,附录中列出。我们的 MSEM 方法消除了多层次效应混淆的问题,并减少了参数估计中的偏差,同时为概念化和检验多层次调节效应提供了一个连贯的框架。