Li Zhenni, Yang Zuyuan, Zhao Haoli, Xie Shengli
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3568-3579. doi: 10.1109/TNNLS.2021.3114400. Epub 2023 Jul 6.
Direct-optimization-based dictionary learning has attracted increasing attention for improving computational efficiency. However, the existing direct optimization scheme can only be applied to limited dictionary learning problems, and it remains an open problem to prove that the whole sequence obtained by the algorithm converges to a critical point of the objective function. In this article, we propose a novel direct-optimization-based dictionary learning algorithm using the minimax concave penalty (MCP) as a sparsity regularizer that can enforce strong sparsity and obtain accurate estimation. For solving the corresponding optimization problem, we first decompose the nonconvex MCP into two convex components. Then, we employ the difference of the convex functions algorithm and the nonconvex proximal-splitting algorithm to process the resulting subproblems. Thus, the direct optimization approach can be extended to a broader class of dictionary learning problems, even if the sparsity regularizer is nonconvex. In addition, the convergence guarantee for the proposed algorithm can be theoretically proven. Our numerical simulations demonstrate that the proposed algorithm has good convergence performances in different cases and robust dictionary-recovery capabilities. When applied to sparse approximations, the proposed approach can obtain sparser and less error estimation than the different sparsity regularizers in existing methods. In addition, the proposed algorithm has robustness in image denoising and key-frame extraction.
基于直接优化的字典学习因提高计算效率而受到越来越多的关注。然而,现有的直接优化方案仅适用于有限的字典学习问题,并且证明算法得到的整个序列收敛到目标函数的临界点仍然是一个开放问题。在本文中,我们提出了一种基于直接优化的新型字典学习算法,使用极小极大凹惩罚(MCP)作为稀疏正则化器,它可以强制强稀疏性并获得准确估计。为了解决相应的优化问题,我们首先将非凸MCP分解为两个凸分量。然后,我们采用凸函数差算法和非凸近端分裂算法来处理由此产生的子问题。因此,即使稀疏正则化器是非凸的,直接优化方法也可以扩展到更广泛的字典学习问题类别。此外,所提出算法的收敛性保证可以从理论上得到证明。我们的数值模拟表明,所提出的算法在不同情况下具有良好的收敛性能和强大的字典恢复能力。当应用于稀疏逼近时,所提出的方法比现有方法中的不同稀疏正则化器能够获得更稀疏且误差更小的估计。此外,所提出的算法在图像去噪和关键帧提取方面具有鲁棒性。