Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany.
Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Rundeturmstrasse 12, 64283 Darmstadt, Germany.
Biosystems. 2022 Jan;211:104557. doi: 10.1016/j.biosystems.2021.104557. Epub 2021 Oct 9.
Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, previously available segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. An U-Net based semantic segmentation approach, as well as a direct instance segmentation approach with a Mask R-CNN are demonstrated. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the methods' contribution to segmenting yeast in microstructured environments with a typical systems or synthetic biology application. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective. Code is and data samples are available at https://git.rwth-aachen.de/bcs/projects/tp/multiclass-yeast-seg.
细胞分割是从显微镜数据中提取定量单细胞信息的主要瓶颈。在微结构环境中,这一挑战更加严重。虽然深度学习方法已被证明对一般的细胞分割任务有用,但以前用于酵母-微结构环境的分割工具依赖于传统的机器学习方法。在这里,我们提出了针对个体酵母细胞的多类分割和区分与细胞相似的微结构的卷积神经网络。展示了基于 U-Net 的语义分割方法,以及具有 Mask R-CNN 的直接实例分割方法。我们概述了用于训练、验证和测试网络的数据集,以及一个典型的用例。我们展示了该方法在微结构环境中分割酵母的贡献,以及一个典型的系统或合成生物学应用。该模型实现了稳健的分割结果,在准确性和速度方面均优于以前的最先进方法。快速准确的分割不仅有利于事后数据处理,而且从图像处理的角度来看,还可以实现对数千个被困细胞的在线监测或闭环最优实验设计。代码和数据样本可在 https://git.rwth-aachen.de/bcs/projects/tp/multiclass-yeast-seg 获得。