Department of Computer Science and Electrical Engineering, Singidunum University, Belgrade, Serbia.
CryoCapCell, Le Kremlin-Bicêtre, France.
Microsc Res Tech. 2024 Aug;87(8):1718-1732. doi: 10.1002/jemt.24548. Epub 2024 Mar 19.
Recent advances in computing power triggered the use of artificial intelligence in image analysis in life sciences. To train these algorithms, a large enough set of certified labeled data is required. The trained neural network is then capable of producing accurate instance segmentation results that will then need to be re-assembled into the original dataset: the entire process requires substantial expertise and time to achieve quantifiable results. To speed-up the process, from cell organelle detection to quantification across electron microscopy modalities, we propose a deep-learning based approach for fast automatic outline segmentation (FAMOUS), that involves organelle detection combined with image morphology, and 3D meshing to automatically segment, visualize and quantify cell organelles within volume electron microscopy datasets. From start to finish, FAMOUS provides full segmentation results within a week on previously unseen datasets. FAMOUS was showcased on a HeLa cell dataset acquired using a focused ion beam scanning electron microscope, and on yeast cells acquired by transmission electron tomography. RESEARCH HIGHLIGHTS: Introducing a rapid, multimodal machine-learning workflow for the automatic segmentation of 3D cell organelles. Successfully applied to a variety of volume electron microscopy datasets and cell lines. Outperforming manual segmentation methods in time and accuracy. Enabling high-throughput quantitative cell biology.
计算能力的最新进展促使人工智能在生命科学中的图像分析中得到应用。为了训练这些算法,需要使用足够大的已认证标记数据集。经过训练的神经网络能够生成准确的实例分割结果,然后需要将其重新组装到原始数据集中:整个过程需要大量的专业知识和时间来实现可量化的结果。为了加快这一过程,从细胞细胞器检测到电子显微镜模式下的定量分析,我们提出了一种基于深度学习的快速自动轮廓分割(FAMOUS)方法,涉及细胞器检测与图像形态学相结合,以及 3D 网格,以自动分割、可视化和量化体积电子显微镜数据集中的细胞细胞器。从开始到结束,FAMOUS 在以前未见过的数据集上,在一周内提供完整的分割结果。FAMOUS 在使用聚焦离子束扫描电子显微镜获取的 HeLa 细胞数据集和通过透射电子断层扫描获取的酵母细胞上进行了展示。研究亮点:引入了一种快速、多模态的机器学习工作流程,用于自动分割 3D 细胞细胞器。成功应用于各种体积电子显微镜数据集和细胞系。在时间和准确性方面优于手动分割方法。实现高通量定量细胞生物学。