Suppr超能文献

类器官揭秘:利用人工智能对深度下一代体外模型进行形态学分析。

Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence.

作者信息

Du Xuan, Chen Zaozao, Li Qiwei, Yang Sheng, Jiang Lincao, Yang Yi, Li Yanhui, Gu Zhongze

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096 China.

Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009 China.

出版信息

Biodes Manuf. 2023;6(3):319-339. doi: 10.1007/s42242-022-00226-y. Epub 2023 Jan 19.

Abstract

In modern terminology, "organoids" refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing similar structures with their source organs or tissues. Observing the morphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology. Artificial intelligence (AI) technology has proven to be effective in many biological and medical research fields, especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices. When used to analyze organoids, AI should also provide more efficient, quantitative, accurate, and fast solutions. In this review, we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods. Secondly, we will summarize the development from machine learning to deep learning and the advantages of the latter, and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis. Finally, we will discuss the limitations of current AI used in organoid research, as well as opportunities and future research directions.

摘要

在现代术语中,“类器官”指的是在体外特定三维(3D)环境中生长的细胞,与它们的来源器官或组织具有相似的结构。通过显微镜观察类器官的形态或生长特征是类器官分析常用的方法。然而,仅靠人工筛选和分析类器官既困难、耗时又不准确,传统技术难以轻易解决这一问题。人工智能(AI)技术已在许多生物和医学研究领域证明是有效的,尤其是在单细胞或苏木精/伊红染色组织切片的分析中。当用于分析类器官时,人工智能也应能提供更高效、定量、准确且快速的解决方案。在这篇综述中,我们将首先简要概述类器官的应用领域,然后讨论传统类器官测量和分析方法的缺点。其次,我们将总结从机器学习到深度学习的发展以及深度学习的优势,接着描述如何利用卷积神经网络来解决类器官观察和分析中的挑战。最后,我们将讨论当前人工智能在类器官研究中使用的局限性,以及机遇和未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9951/9867835/7868dd3015f1/42242_2022_226_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验