School of Economics and Finance, Xi'an Jiaotong University, No. 74, Yanta West Road, Xi'an, 710061, People's Republic of China.
Environ Sci Pollut Res Int. 2022 Mar;29(11):15743-15762. doi: 10.1007/s11356-021-16643-y. Epub 2021 Oct 11.
To achieve China's determined contributions by 2030 and establish nationwide carbon emission trading system (ETS) which main participants are sectors, appropriated carbon emission allowance (CEA) allocation among sectors is crucial. In CEA distribution, fairness is primary; and sectoral efficiency is another significant factor. Nevertheless, considering fairness and efficiency while covering various sectors is a challengeable issue. Hence, combined with a new tow-objective data envelopment analysis (DEA) model and genetic algorithm (GA), a novel allocation framework is proposed, i.e., dual level allocation scheme incorporated with GA (DLA-GA). On the basis of evaluating the CO emission performance of various sectors in China, the corresponding allocation steps are put forward. Through the value convergence and value repetition tests, the stability and feasibility of DLA-GA are justified. Then, the results of the DLA-GA and grandfathering principle are compared. The research shows that: (1) under the same constraint conditions, the emission right of CO is allocated with DLA-GA, which leads to lower cost and higher overall sectoral performance; (2) through utilizing the En-Lorenz and En-Gini coefficients, it has found that higher allocation equity among sectors emerges via DLA-GA;(3) the key reduction sectors have been revealed through emission value estimation. This work may contribute to enrich the methodologies in CEA allocation at different dimensions, and provide some references for policymaker regarding the achievement of 2030 carbon reduction target.
为实现中国 2030 年的减排目标,并建立全国性的碳排放交易体系(ETS),其中主要参与者是各个行业,为这些行业分配适当的碳排放配额(CEA)至关重要。在 CEA 分配中,公平是首要考虑因素;而行业效率则是另一个重要因素。然而,在覆盖各个行业的同时兼顾公平和效率是一个具有挑战性的问题。因此,本文结合一种新的双目标数据包络分析(DEA)模型和遗传算法(GA),提出了一种新的分配框架,即结合 GA 的双层分配方案(DLA-GA)。在评估中国各行业 CO 排放绩效的基础上,提出了相应的分配步骤。通过价值收敛和价值重复测试,验证了 DLA-GA 的稳定性和可行性。然后,将 DLA-GA 的结果与祖父原则进行了比较。研究结果表明:(1)在相同的约束条件下,通过 DLA-GA 分配 CO 的排放权,可降低成本并提高整体行业绩效;(2)通过利用 En-Lorenz 和 En-Gini 系数,发现 DLA-GA 可提高行业间的分配公平性;(3)通过排放价值评估,揭示了关键减排行业。这项工作可能有助于丰富不同维度的 CEA 分配方法,并为决策者实现 2030 年碳减排目标提供参考。